

BI-DIRECTIONAL INSERTION FLOW TRANSDUCER Model DOR
INSTRUCTION MANUAL

C

IMPORTANT INFORMATION

Thank you for purchasing a Kobold Insertion Flowmeter. It is important that you read this manual to gain a full understanding of the capability and operational aspects of the equipment you are about to install.

This information is provided only to assist in the installation of the product and does not diminish your obligation to read the manual.

1. Select a location that meets the requirements as illustrated on the guideline sheet (please see the data sheet/order codes). An ideal installation would provide for 25 diameters of straight pipe upstream from the meter and 10 diameters downstream.

You will also need to know the pipe internal diameter (NB) and pipe wall thickness for calculation of the insertion depth. (refer page 5.) Non ideal installations may require in-situ calibration (refer to the factory for details).
2. After screwing the flowmeter in place ensure the flow alignment mark located on the top positioning collar of the meter aligns with the flow in the pipe (refer page 5). This ensures the paddle is correctly aligned to the flow.
Note. the meter is bi-directional so a flow direction arrow is not provided.
3. Calculate and adjust the height of the flowmeter (refer page 5).
4. Electrical Installation depends on the model you have purchased.

If the dualpulse is fitted or supplied with a receiving instrument such as a totaliser or rate totaliser please refer to the appropriate manual and page 10 of this manual. For pulse output meters, select the appropriate output and wire to your receiving device. (refer pages 7 to 9).
5. Calculate the flowmeter K (scale) factor to suit the installation. For ideal installations refer to page 11 or 12 or 13 of the flowmeter Manual. For non ideal installations the K-factor may be calculated by performing an in-situ calibration. Enter the appropriate K-factor into your receiving instrument.

CONTENTS

PAGE
1.0 INTRODUCTION
1.1 Model number designation
1.2 Overview

3
1.3 Operating principal 3
1.4 Specifications

INSTALLATION
2.1 Meter location 4
2.2 Meter installation \& orientation 4
2.3 Height adjustment
2.4 Flow direction orientation 5
$\begin{array}{lll}2.5 & \text { Hot tap installations } & 6\end{array}$
3.0 ELECTRICAL CONNECTIONS
3.1 Standard outputs 7
3.2 Optional Reed switch output 7
3.3 Instrument cable installation requirements 8
3.4 Pulse output selection (standard outputs) 8
3.5 QP Quadrature pulse output option
3.7 Connection to family instruments

K - FACTOR (calibration factor for meter)
4.1 K-factors for common pipe ID sizes $<575 \mathrm{~mm}$
$4.2 \quad$ K-factors for large pipe ID $>460 \mathrm{~mm}$
4.3 Calculating K-factors (metric units - litres or M3)
4.4 Calculating K-factors (US gallons)

1.1 Model no. designation

Please see the data sheet

1.2 Overview

Kobold insertion flow transducers provide a cost effective and simple means of measuring the flow of a wide range of low viscosity liquids. Installation is quick and inexpensive for pipe diameters ranging from 40 mm to 900 mm ($1.5-366^{\prime \prime}$) and up to 2500 mm (100 ") nominal bore for the Hot tap capable model DOR-52.

The flowmeter has a linear measuring range of $0.3 \sim 10.0$ metres $/ \mathrm{sec}$. ($1 \sim 33 \mathrm{ft} / \mathrm{sec}$.).
Minimum detectable flow velocity is $0.15 \mathrm{~m} / \mathrm{sec}$. ($0.5 \mathrm{ft} / \mathrm{sec}$.). When used in conjunction with the ZOD-Z3 flow rate totaliser NLC feature the linear flow range is extended down to 0.15 $\mathrm{m} / \mathrm{sec}$. ($0.5 \mathrm{ft} / \mathrm{sec}$.) with an improved linearity.

The flowmeter is constructed from 316 L (1.4404) stainless steel enabling use in many applications for metering water and low viscosity chemicals.

Two independent pulse outputs are standard \& can directly input to a wide range of ancillary instruments, PLC's and computers. Both pulse outputs have a high level of immunity to electrical interference. Options include a reed switch.

1.3 Operating principle

Flow passes through a pipe causing the rotor to spin. Magnets installed in the rotor pass by pulse sensors within the transducer body \& inturn this produces frequency outputs proportional to flow rate.

1.4 Specifications

Velocity measuring range (linear): $\quad 0.3 \ldots 10 \mathrm{~m} / \mathrm{s}$ equates to approx. $0.25 \ldots 49,000 \mathrm{l} / \mathrm{s}$ in DN40 to DN2500 pipes; $0.15 \ldots 10 \mathrm{~m} / \mathrm{s}$ when using the linearisation function of electronic type Z3

Linearity:
Repeatability:

Max pressure:
Temperature range:

Material
Body:
Rotor:
Rotor shaft:
Bearing:
Seals:
$\pm 1.5 \%$ with well est. flow profile
$\pm 1 \%$ of f . s . at factory conditions and optimal straight runs

80 bar
$-40 \ldots+100^{\circ} \mathrm{C}$ standard, see max.allowable medium temperature table for other options and restrictions
stainless steel 1.4404 (316L)
PVDF or PEEK (depending on model)
stainless steel 1.4404 (316L)
graphite/PTFE
FPM (standard): $-15 \ldots+200^{\circ} \mathrm{C}$
EPR (ethylene propylene rubber): $-20 \ldots+120^{\circ} \mathrm{C}$, for ketones only
PTFE encapsulated FPM: $-20 \ldots+200^{\circ} \mathrm{C}$
NBR (Nitril): $-65 \ldots+125^{\circ} \mathrm{C}$

Electronics

Output frequency at max. velocity: $220 \ldots 240 \mathrm{~Hz}$ (hall effect and voltage output),

$73 . . .80 \mathrm{~Hz}$ (reed switch output)

see electrical output specifications and electronics comparison table in the data sheet
see electronics comparison table in the data sheet 5 core, screened cable, length 3 meters
1,000 meters maximum, without integrated electronics M20x1.5 (standard), 1/2" NPT adapter (optional)
IP68 (cable connection),
IP66/67 (all other electrical connections)
Minimum: 10xd (upstream), 5xd (downstream) Optimal: 25xd (upstream), 10xd (downstream)
(approx., without electronics):
1.6 kg (DOR-4), 2.5 kg (DOR-5)

2.0 INSTALLATION

2.1 Meter location

Choose an appropriate section of horizontal or vertical pipe as per the guidelines below. With vertical pipe installations the media should be pumped up through the pipe past the flow sensor so that any entrained air will pass freely.

The DOR flow sensor requires a fully developed turbulent flow profile to ensure maximum measurement accuracy and repeatability. This can be achieved by installing the DOR in a straight run of pipe. We recommend at least 10 but ideally 25 straight pipe diameters upstream \& at least 5 but ideally 10 pipe diameters downstream of the flowmeter. Major obstructions such as pumps, valves or strainers will require longer straight runs before and after the flowmeter

2.2 Meter installation \& orientation

Cut a 40 mm diameter hole (1.6") on either the 2 , 10 or 12 o'clock positions of the pipe. If there is any likelihood of air entrainment in a horizontal pipe do not locate the flow transducer in the 12 o'clock position.

Install a female threaded weld on fitting (threadolet) or service saddle.
Wrap the threads of the flowmeter with PTFE tape or sealing compound \& screw the unit into the installed fitting.

2.3 Height adjustment calculation

Calculate the adjustment height A for DOR-42 (or AA for the DOR-52) as follows:
A (for DOR-42) $=175 \mathrm{~mm}(6.9 \mathrm{~F})-(\mathrm{B}+\mathrm{C}+\mathrm{D})$
AA (for DOR-52) $=420 \mathrm{~mm}\left(16.5^{\prime \prime}\right)-(B+C+D)$
Where :
B = Distance between the top of the pipe \& the top of the hex adaptor
C = Pipe wall thickness
D $=$ Insertion depth (pipe ID $\div 8$)

Examples of insertion depth \mathbf{D}
For 40 mm pipe ID ($\mathrm{D}=5.0 \mathrm{~mm}$) For 50 mm pipe ID ($D=6.25 \mathrm{~mm}$) For 100 mm pipe ID ($\mathrm{D}=12.5 \mathrm{~mm}$) For 400 mm pipe ID ($\mathrm{D}=50.0 \mathrm{~mm}$)

Turn the height adjustment nuts (1) as required so that the distance between the top of the hex adaptor (2) and the top of the positioning collar (3) equals your calculated distance A (for DOR-42) or AA for model DOR-52. Retighten the height adjustment nuts (1).

2.4 Flow direction orientation

The unit is bi-directional however the paddle must be aligned with the direction of flow.
Using a 2 mm hex key (Allen key), unlock the locking screw located on the positioning collar (3) then insert the hex key (as a lever) in the body rotating hole located above the collar, turn the body until the alignment slot is parallel with the direction of pipe. Retighten the locking screw.
2.5 Hot tap installation (model DOR-52)

Clean \& lubricate screw threads before
withdrawing the
transducer body in order to avoid nut seizure

Hot tap installation should only be performed by qualified personal. Installation procedures should be in accordance with the safety rules, regulations and equirements applying to the territory in which the flow transducer is being installed.

IMPORTANT

Before removing the

 DOR-52 from the installation first withdraw the transducer body to the maximum distance allowed by the three height adjusting threaded rods. This will enable the isolating valve to be fully closed without damaging the paddle.If necessary extend valve port using a 2 " nipple \& socket combination to ensure the paddle is clear of the ball valve.

ELECTRICAL CONNECTIONS
(see page 9 for QP outputs)

3.1 Standard outputs

3.2 Optional Reed switch output

HAZARDOUS AREAS

The REED SWITCH output is classed as a "simple apparatus" as defined in the CENELEC standard EN50020 \& recognized ATEX directive. It can be connected to an approved I.S. secondary strument with both being located in the
Rend Switch
witch may also be connected hrough an approved I.S. barrier.

Note: The Reed switch produces $1 / 3^{\text {rd }}$
the normal pulse output value
(eg. $1 / 3$ the standard K-factor)

3.3 Instrument cable installation requirements

Use twisted multi-core low capacitance shielded instrument cable (22 AWG ~ 7x 0.3 stranded) for electrical connection between the flow meter and the remote instrumentation The screen should be earthed at the readout instrument end only to protect the transmitted signal from mutual inductive interference.

The cable should not be run in a common conduit or parallel with power and high inductive load carrying cables as power surges may induce erroneous noise transients onto the transmitted pulse signal. Run the cable in separate conduit or with other low energy instrument cables.

3.4 Pulse output selection (standard outputs)

The standard flowmeter has two independent pulse output signals that are linearly proportional to volumetric flow rate. Pulse transmission can be up to 1000 metres (3300 ft). An optional I.S. Reed Switch output is available (see page 7).

Voltage pulse (pulse wire) output

A self generating pulse output which produces a strong 1.5 volt voltage spike of approximately 10 micro/second duration with no dependence on rotor speed.

Square Wave Pulse (Hall sensor) (also applies to non-magnetic \& QP Hall outputs) An NPN open collector transistor pulse output produced by a solid state Hall Effect device. This three wire device requires $5 \sim 24 \mathrm{vdc}$ and produces an NPN square wave output (20 mA max. sink), pulse width is $2 \sim 75 \mathrm{mSec}$. The Hall output requires a pull up resistor, these are generally incorporated in most receiving instruments. For (QP) Quadrature pulse output refer details page 9
\square signal
($-0 \vee$ ground) White Black

3.5 Quadrature outputs

DOR series flow meters supplied with the QP option produce two NPN open collector pulse outputs from two Hall Effect sensors. The outputs are " phase offset " in their timing so that external electronics are able to differentiate. These outputs may be used to assure output signal integrity or to measure bi-directional flow.

3.6 Bi-directional flow

The DOR flow transducer is capable of accurately measuring flow in both directions without modification. Meters fitted with the QP output option (quadrature pulse output) may be interfaced with the Pulse Discriminator Module (PD2). The PD2 accepts the Quadrature pulse inputs \& from these will discriminate between forward \& reverse flow. Two individual \& proportional pulse outputs can then be sent to appropriate totalising registers or an Z3 add and subtract flow rate totaliser.

It is important to note that the Quadrature Pulse option has the same pulse resolution (pulses/unit volume) as a standard flowmeter for both forward \& reverse outputs.

Flowmeter with QP outputs

3.7 Voltage Pulse Connection to family instruments

4.0 K - FACTORS (calibration factors for meter)

The K-factor (pulses / litre, gallon etc.) will vary in relation to the bore size of the pipe in which the flowmeter is installed.

The K-factors and formula shown are a result of factory testing using smooth bore piping under ideal conditions. Variations to the given K-factors may occur when using rough bore piping or inadequate flow conditioning on either side of the flow transducer (refer clause 2.1). In these instances on site calibration may be used to determine the K-factor.

4.1 Flow transducer K- factors for common pipe sizes

Pipe detail		K-factors (standard K-factors for voltage \& square wave outputs)					
NB	ID (\#40)	Schedule 40 pipe - (\#40)			Schedule 80 pipe - (\#80)		
inches	mm	p / litre	p / m3	p / USgal	p / litre	p / m3	p / USgal
1.5"	40.9	18.678	18678	70.695	21.524	21524	81.468
2"	52.6	11.238	11238	42.534	12.818	12818	48.517
2.5"	62.7	7.880	7880	29.824	8.899	8899	33.682
3"	78.0	5.062	5062	19.161	5.676	5676	21.485
3.5 "	90.2	3.768	3768	14.263	4.200	4200	15.896
4"	102	2.912	2912	11.021	3.233	3233	12.237
5"	128	1.839	1839	6.959	2.025	2025	7.665
6"	154	1.268	1268	4.798	1.402	1402	5.307
8"	203	0.719	719.0	2.721	0.787	787.2	2.980
10"	255	0.450	450.3	1.705	0.496	495.9	1.877
12"	303	0.316	316.0	1.196	0.347	347.4	1.315
14"	333	0.261	260.5	0.986	0.286	285.7	1.081
$16 "$	381	0.198	198.0	0.750	0.217	217.0	0.821
18"	429	0.156	155.8	0.590	0.171	170.6	0.646
20"	478	0.125	125.4	0.475	0.138	137.8	0.521
24"	575	0.087	86.64	0.328	0.095	95.39	0.361

For other pipe sizes below 610mm (24") not listed above, use the graphs and apply the formula on the following pages ($12 \& 13$).
4.2 K-factors for large pipes 460mm ID (18") and above use:

Pulses per litre	$=28647 \div$ pipe $I^{2}(\mathrm{~mm})$
Pulses per M^{3}	$=28647000 \div$ pipe ${I D^{2}(\mathrm{~mm})}^{\text {Pulses per US gallon }}=168.14 \div$ pipe ID^{2} (inches)
Pulses per Imp. gallon	$=201.94 \div$ pipe ID^{2} (inches)

NOTE : K-factors for Reed Switch output option are $1 / 3$ the standard factors of voltage pulse output
4.3 Calculating K-factors (litres or m³)

Calculate K-factor (pulses / litre) using the above graph and the metric constant of 1273.2 as follows :

$$
\text { Pulses } / \text { litre }=\frac{1273.2 \times(A) \text { from graph }}{\text { pipe } / D^{2}(\mathrm{~mm})}
$$

Example 'a':
K-factor for 100 mm pipe: 1) from graph 100 mm ID $(A)=24.0$

$$
\text { 2) pulses/litre. }=\frac{1273.2 \times 24.0}{10000}
$$

$$
\text { = } \underline{3.056} \text { p/litre }
$$

4.4 Calculating K-factors (US gallons)

Calculate K-factor (pulses / gallon) using the above graph and the volumetric constant of 24.51 as follows :

$$
\text { Pulses / US gal. }=\frac{24.51 \times(\mathrm{A}) \text { from graph }}{\text { pipe } I D^{2} \text { (inches) }}
$$

Example 'b' :
K-factor for 10 " pipe: \quad 1) from graph 10" ID $(A)=7.01$
2) pulses/gal. $=\frac{24.51 \times 7.01}{100}$
$=1.718 \mathrm{p} / \mathrm{gal}$

NOTE : K-factors for Reed Switch output option are $1 / 3$ the standard factors of voltage pulse output.

5.0 Declaration of Conformance

We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Bi-Directional Insertion Flow Transducer Model: DOR

to which this declaration relates is in conformity with the standards noted below
97I23 EC Pressure Equipment Directive
Pressure Accessory - Insertion Aowmeter - No CE Marking
Article 3, Paragraph 3; Diagram 9, Piping, Group II Liquids
Article 3, Paragraph 3; Diagram 8, Piping, Group I Liquids - with the following restrictions

Connection Nominal Size	Maximum Pressure Rating For Group I Liquids
$1.5^{\prime \prime}(40 \mathrm{~mm})$	50 bar
2 " $(50 \mathrm{~mm})$	40 bar

2002/96/EC
Waste Electrical \& Đectronic Equipment (VEEE)
2002/95/EC
Restriction of Hazardous Substances (RoHS)
Also the following EEC guidelines are fulfilled:
2004/108/EC EMC Directive - Dectromagnetic Compatibility Directive
When fitted with an optional Reed Switch ONLY pulse output, which is classified as a simple apparatus, and when installed in accordance with Hazardous Area standards by a competent professional the product also complies with:

EN 60079-11: 2011 - Section 5.7
Equipment protected by Intrinsic Safety - Simple Apparatus

EN 13463-1: 2009

Non electrical equipment for use in potentially explosive atmospheres

When fitted with an integral EX-ia certified instrument such as the ZOD-Z3 or ZOD-Z1, in combination with a Reed Switch only output, the product also complies with:

94/9/EC
ATEX Directive

Certificate about acknowledgement of quality assurance production

Certificate number: BVS 12 ATEX ZQS/E110
Certification body: DEKRA EXAM GmbH, notified body No 0158
SARA 06 ATEX M348 - Only when equipped with integral ZOD-Z3 or ZOD-Z1 options Issued by Lira Certification - United Kingdom

EN 13980:200

Potentially Explosive Atmospheres - Application of Quality Systems

94/9/EC Articles IV and V

ATEX Directive

H. Peters

General Manager

M. Wenzel Proxy Holder
11. Declaration of Conformance

We, KOBOLD Messring GmbH , Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Batch Controller
Model: ZOD-B1K
to which this declaration relates is in conformity with the standards noted below:
EN 60529, DIN VDE 0470-1 1992-11
I.P. Ingress Protection Classifications

EN 61326-1: 2006-10
Electrical equipment for control, instrumentation technology and laboratory use - EMC requirements (Industrial area)

EN 61010-1: 2002-08
Safety requirements for electrical equipment for measurement, control, and laboratory use 2008/35/EC Waste Electrical \& Electronic Equipment (WEEE)

Also the following EWG guidelines are fulfilled:

2004/108EC
2006/95 EC
EMC Directive Low Voltage Directive

Hofheim, 8. Nov. 2010

H. Peters General Manager
M. Wenzel Proxy Holder
Manufactured and sold by:

Kobold Messring GmbH
Nordring 22-24
D-65719 Hofheim
Tel.: +49(0)6192-2990
Fax: +49(0)6192-23398

Universal Mount Series

BATCH COITROLER Model ZOD-BIK
INSTRUCTION MANUAL

Model number designationSpecificationsSpecificatioOverviewLCD displays
1.342. OPERATION
2.1 Batch SetBatch RUNBatch STOP
Batch Total
2.5 Accumulative total
2.6 Total Number of Batches (TNB)
Keypad function matrix

5

2.3

- integral mount - wall mount $\quad 6$ pipe mount - panel moun unpowered sensors
powered sensors external powering remote switches wiring requirements single stage control
two stage control
relay control logic - status \& relay connections

INSTALLATION

3.1	Mounting
3.2	Flowmeter connections
3.3	Wiring connections

4. PROGRAM PARAMETERS

4.1 PIN number protection

4.2 Resetting accumulative total
$4.3 \quad$ Resetting accumulative total
4.3 Engineering units
K -factor (scale factor)
12
$4.5 \quad$ K-acimal points
Decimal points
Count direction
Start delay \& Pre-stop
4.8 Automatic overrun compensation (AOC) 13
4.9 Missing pulse detection - no flow alarm output
4.10 Batch limiting
4.11 Controller network ID number
5. PROGRAMMING FLOW CHART 14
6. BATCH OPERATING PROCEDURE 15
7. SECONDARY I/O
$\begin{array}{ll}7.1 & \text { Batch status output } \\ 7.26\end{array}$
$\begin{array}{ll}7.2 & \text { No flow alarm output } \\ 7.3 & \text { Run inhibit input }\end{array}$
Run inhibit input
16
7.4 Solid state output logics (NPN selection)
8. BATCH CONTROLLER NETWORKING 18 \& 19
9. REFERENCE INFORMATION
9.1 Program detail record 20
9.2 Error messages
9.3 Back up PIN number

1.1 Model number designation

Order Details (Example: ZOD-B1KS1F300)

Model	Housing Type	Electrical connection/ Cable gland	Supply Voltage	Options	Mechanical protection
ZOD-B1	KS = universal mount (standard) $\mathbf{K M}^{11}=\text { integral mount }$	$\begin{aligned} & 1= \\ & 3 \times \text { cable entry } \\ & \text { M20 } \\ & 2= \\ & 3 \times \text { cable entry } \\ & 1 / 2^{\prime \prime} \text { NPT } \\ & \hline \end{aligned}$	$\begin{aligned} \mathrm{F}^{2)}= & 110 \mathrm{VAC}, \\ & 8 \ldots 24 \mathrm{VDC} \end{aligned}$	$\begin{array}{\|l} \mathbf{0}=\text { without } \\ \mathbf{R}=2 x \\ \text { Relay } \\ \text { (for ZOD- } \\ \text { B1K) } \end{array}$	$0=$ without
	$\begin{gathered} \text { PP = panel mount } \\ \text { (IP20) } \end{gathered}$	$\begin{aligned} & \mathbf{0}^{2)}= \\ & \text { screw terminal } \end{aligned}$	$\begin{aligned} \mathrm{FO}^{2)}= & 220 \mathrm{VAC}, \\ & 8 \ldots 24 \mathrm{VDC} \end{aligned}$		$\mathbf{S}^{2)}=$ silicone bezel boot

order only when retrofitting a pulse meter
${ }^{2}$ only possible with ZOD-B1PP..

Part No.	ACCESSORIES FOR ABOVE SERIES: Model: ERS-ZOD-...
1522001	stainless steel wall mount kit
1522002	stainless steel 2" pipe mount kit
1522011	DOM series cooling fin kit for flowmeters with integral instruments
1522005	DOR \& Turbine stem adaptor - metric (M16 to M20)
1522006	DOR \& Turbine stem adaptor - USA (M16 to 1/2" NPT)
1323006	DOR-42 stem (100mm effective height, threaded M16 male)
$\mathbf{1 3 2 3 0 1 1}$	DOR-52 stem (350mm effective height, threaded M16 male)
$\mathbf{1 4 1 2 0 6 3}$	Relay contol output board with two SPCO relays

Display:

Functions:
Configuration :

Signal Input:

Power requirement :
Battery :

Control outputs :

Alarm / pulse output : compensation

Batch limiting :
Run inhibit input:
Network I/O :

Physical :

May be link configured for PNP to drive compatible logic circuits.
. terminal 7, (5000hz max.), 1A maximum drive capability.

Batch status output: NPN open collector, 0.1A dc resistive load max. (page 16).
K-factor range : Eg. Pulses/litre, gallon, lb etc. Programmable range is $0.001 \sim$ 9999999.999 with a floating decimal point during K-factor entry.

Engineering units: Selectable Ltr, gal, m3, kgs, lbs (maximum 8 digits of batch).
Count direction: Count UP or count DOWN selectable at program level.
Automatic overrun : AOC enabled-disabled selection at programming level (page 13).

Batch size limits can be set at programming level (page 13).
8 digit alpha numeric LCD characters 9 mm (0.35 ") high with second line sub script text. 8 digits totalising, 3 programmable decimal points, 5 digits for Total number of batches.

Batch total, Accumulated total \& Total number of batches (TNB).
Flow chart entry of data with scrolling English text prompts. User selectable 4 digit PIN number set-up protection. Programmable decimal points and K-factors. All programmed data and batch status are E^{2} PROM protected in the event of a power failure.

Universal pulse/frequency input compatible with Reed switch, Hall effect, Namur proximity detectors, Pulse wire, voltage, current \& Coil (15mV P-P min). Max. input frequency 10 Khz .

Regulated 12~24Vdc x 50mA (add switched current)
3.6 Vdc lithium battery annunciates a power loss \& preserves batch settings \& progress at time of power loss.

Two independent NPN open collectors, 1A dc resistive load max. ,

Run key can be inhibited from an external source (page 16).
A two wire loop system can link up to 9 individual batch controllers with one common flowmeter to provide an economical multi source/dispense interlocked batching system (page 18)
A) IP66 / 67 high impact glass reinforced Polyamide enclosure.
B) $3 \times \mathrm{M} 20$ or $1 / 2^{\prime \prime}$ NPT female conduit entries.
C) 125 mm diameter $\left(5^{\prime \prime}\right) \times 61 \mathrm{~mm}$ deep $\left(2.5^{\prime \prime}\right) \times 400 \mathrm{~g}(0.9 \mathrm{lb})$.
D) Temperature range from $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$.

2. OPERATION

2.1 Batch set : Pressing the Batch set key allows the user to enter a batch value by using the arrowed keys to select the appropriate digits and change their value. Pressing Batch set again enters \& confirms that the new batch value has been entered.
2.2 Run : Press RESET then RUN to start the batch. If there are no interruptions the batch controller will automatically stop the batch once the batch value has been reached.
2.3 Stop : Pressing the STOP key at any time during the batch will cause the batcher to go into a "PAUSED " state and the output relays will be turned off. At this point the user can resume batching by pressing the RUN key or abort the batch by pressing the RESET key.
2.4 Batch Total : The batch value is displayed in all normal operational modes.
2.5 Accumulative Total : Accumulative total can be reset in the program mode. The accumulative total is displayed momentarily by pressing the ACCUM TOTAL key.
2.6 TNB display (Total number of batches) : ZOD-B1 will accumulate the total number of individual completed batches. Reset of TNB is simultaneous with the resetting of the Accumulative total in program mode. To view the TNB value simultaneously press \& hold the two top right hand keys (Prog. \& Accum Tot).

2.7 Keypad functions :

KEY	FUNCTION IN OPERATING MODE	FUNCTION IN PROGRAM MODE
2) Enters \& Exits the batch set mode.		
2) May be pressed during batching to show		
batch pre-set value, this action will not		
interfere with the batch process.		

* order Pipe mount kit P/No. APM comprising two brackets,

Conduit entries have an integral moulded seal, to remove break seal out using suitable lever (eg. screwdriver or rod)

Relay 2 (high)	14
Relay 1 (low)	13
Batch status	12
Not used	11
Not used	10
Inhibit input	9
-0V (ground)	8

2. Voltage Pulse (\& pulse wires)

ory set, do not change
Relay 2 (high) 14 Relay 1 (low) 13 Batch status 12

Not used 11
Not used 10 Inhibit input 9 -OV (ground) 8
3. Coil (Turbine \& paddle style flowmeters)

5. Namur (inductive proximity switch)

6. Current modulated pulse

(4 mA to 20 mA pulse amplitude)

Factory set, do not change
Relay 2 (high) 14 Relay 1 (low) 13 Batch status 12

Not used 11
Not used 10 Inhibit input 9

3.3 Wiring connections

Powering \& Remote switches (remote keys)

Wiring requirements : Use multi-core screened twisted pair instrument cable ($0.25 \sim 0.5 \mathrm{~mm}^{2}$) for electrical connection between the ZOD-B1 and any flowmeter or remote switch input. The screen needs to be grounded at -0 V (terminal 8), this is to protect the transmitted signal from mutual inductive interference.
Instrument cabling should not be run in a common conduit or parallel with power or high inductive load cables Power surges \& power line frequencies may induce erroneous noise transients onto the signal. Run instrument cables in a separate conduit or with other instrument cables.

Single Stage Control (use relay 1 or 2, relay 2 has pre-stop programming capability)

Two Stage Control (using relays 1 \& 2)

Relay Control Logic

4. PROGRAM PARAMETERS

4.1 PIN No. Program Protection

Any user defined PIN number other than 0000 will engage the program protection feature, failure to input the correct PIN number will deny the ability to change any of the program parameters but will allow the user to step through and view the existing program parameters.

Only one PIN number may be set but this can be changed at any time after gaining access through PIN entry. A second back up PIN number is installed at the factory should the programmed PIN be lost or forgotten. (refer bottom of page 19 for the back up PIN No.)

4.2 Resetting Accumulated Total \& Total Number of Batches (TNB)

Resetting the Accumulated Total \& Total Number of Batches (TNB) is done at "RESET ACCUMULATIVE TOTALS " in the program mode. Both Accumulated Total \& TNB are reset if you select YES at this program level.
4.3 Engineering Units (refer clause 1.4)

Select from available Engineering units to right of the display. No engineering units denote NIL set allowing the user to set up the instrument with other units of measure which are not available on the ZOD-B1 LCD display.
4.4 K-factor (scale factor)

Enter K-factor starting with the most significant number, up to 7 prime numbers \& 3 decimal numbers can be entered. Trailing decimal numbers move into view as digits to the right are progressively selected, any significant digits which may move from view remain functional.

4.5 Decimal Points

Up to three decimals points can be selected for Batch Total or Accumulative Total.

4.6 Count Direction

B1 can be programmed to count DOWN from a preset quantity or UP from zero.
Overruns in the count down mode will show with a minus sign in front of the overrun value.

4.7 Start Delay \& Pre-Stop

Relay 2 can be programmed to turn on a time period after the run signal is given then turn off again a preset number of litres, gallons etc. before the end of the batch. These operational features provide greater control over the dynamics of the batching process through soft start and/or soft stop or phasing of the control valves and/or pump control.

The Start Delay can be set from 0 seconds (no delay) to 999 seconds. The pre-stop range is 0 (no pre-stop) to 999 units of measure (litres or gallons etc.).

4.8 Automatic Overrun Compensation (AOC)

Most batching applications will have an inherent end of batch overrun due mainly to the response time of the process valve. Overrun can be compensated by closing the valve slightly before the batch value is reached so that the exact batch value is achieved by the time that the system comes to rest.

ZOD-B1 has an Automatic Overrun Compensation feature which when enabled will assess the degree of overrun on previous batches and automatically alters the close timing of the process valve so that the exact batch value is reached. This feature should not be enabled on batch processes which are subject to erratic or inconsistent flow conditions.

4.9 Missing Pulse Detection

When a value other than 00 seconds is set at Time Out (T / OUT) in the program mode, ZOD-B1 will monitor for loss of flowmeter input signal at all times when either of the control relays $1 \& 2$ are energised. If no pulses are received within the time out period ($0 \sim 99 \mathrm{sec}$.) the controller will de-energise both control relays and scroll a "NO INPUT" message across the LCD display, at the same time it will turn on the "no flow alarm" output at terminal 7, (see page 17 for flow alarm connection detail).

At "NO INPUT" the user must acknowledge the alarm condition by pressing the STOP key once, the operator then has the option of continuing the batch by pressing the RUN key or aborting the batch by pressing the RESET key which will return the controller to the original batch set value.

4.10 Batch Limit

To avoid entering excessive batch quantities, a maximum batch limit can be set at the program level. ZOD-B1 will not accept a batch value which exceeds the batch limit, on rejecting an excessive batch value the controller will scroll the message "BATCH VALUE EXCEEDS BATCH LIMIT" and default to the batch limit on entry (batch set).

4.11 Controller networking ID number

Each controller can be given a networking ID number in the range of 1~9. Allocating an ID number other than 0 is only necessary when a number of controllers are to be networked together for interlocking purposes (see page 18 for Controller Networking). Setting the ID number to zero inhibits this function.

Note: The instrument defaults out of the program mode if no program entries are made after 4 minutes.
5. PROGRAMMING FLOW CHART

6. BATCH OPERATING PROCEDURE

7. SECONDARY I/O

7.1 Batch Status Output

A solid state NPN output signal is switched on at terminal 12 when a batch is started, the signal remains on until the batch cycle is completely finished or the batch is stopped and aborted using the STOP \& RESET keys.

The output is used to notify other control equipment when ZOD-B1 is in operation or is paused (by pressing STOP) or inhibited through an input at terminal 9 (RUN inhibit), the signal remains on under all three conditions. The signal can also be used to inhibit (lock out) other equipment whilst the controller is in use

72 Alarm Output

An NPN/PNP selectable solid state output signal (terminal 7) is activated when the missing pulse detection feature detects a no flow condition (refer 4.9). NPN/PNP selection is to be in accordance with the connection options on the following page (17)

7.3 Run Inhibit Input

The RUN inhibit feature enables ZOD-B1 to interlock with other devices within the system or process when ZOD-B1 is in use.

When a contact is made across the Run inhibit input at terminal 9, a batch cannot be started and at the same time an "ENGAGED " prompt will show on the LCD display. If the inhibit contact is made whilst a batch is running the batch will be paused. When the run function is inhibited it is still possible to enter a new batch quantity or review the accumulated totals but it will not allow the operator to RUN or re-start the batch until the inhibit input is released.

An example of this feature in practice is where a batch should not be allowed to RUN whilst a valve at another location is open.

7.4 Current Sinking outputs (NPN

Current sinking derives its name from the fact that it "sinks current from a load". When activated the current flows from the load into the appropriate output (terminals 7,12, $13 \& 14$). NPN is the factory default configuration for the outputs. Refer to pages $10 \& 11$ for wiring control outputs

Driving a logic input \qquad The load would normally have an internal pull up resistor on its input as shown

Driving a coil ---- - The NPN style of output is to be used when driving a coil. The coil load is obtained by dividing the coil voltage by coil impediance (Ω), is expressed in amps \& is not to exceed 100 mA at terminals $7 \& 12$ or 1 A at terminals $13 \& 14$. The coil voltage is connected across \& must match the ZOD-B1 supply voltage \& the appropriate output (terminals $7,12,13 \& 14$).
 suppression diode across the coil (refer page 10

7.5 Current Sourcing outputs (PNP)

Current sourcing gets its name from the fact that it "sources current to a load". When activated the current flows from the output $(7,13 \& 14)$ into the load. When wired as below the output voltage pulse is the supply voltage of the load. The load would normally have an internal pull down resistor on its input as shown.

8. CONTROLLER NETWORKING

ZOD-B1 has a unique networking feature which allows up to 9 individual batch controllers to be networked together with each being connected to one common flowmeter (see opposite).

Typical applications are where one liquid is being dispensed to a number of individual outlets or a number of different liquids are to be batched via one common flowmeter. In either application each batch controller is wired to the same flowmeter but controls its own process control valve.

Networking takes place when any one controller is started, at this point the flowmeter input (count) is restricted to the controller in use, all other controllers will not count and their start function will be inhibited and an "ENGAGED" will scroll across the LCD display showing the ID number of the controller in use.

Batch entries can be made whilst individual batch controllers are inhibited (locked out) but they cannot be started until the controller in operation has completed its batch cycle.

For the network feature to work the network DIP switches must be set as shown \& each batch controller MUST be programmed with an individual ID number other than 0 (zero).

Network loop wiring

Flowmeter Multi point batching

Multi product batching

9. REFERENCE INFORMATION

9.1 Program detail

User selected PIN No.	
Engineering units	
K-factor (scale factor)	K =
Decimal for batch total	$\square 000 . \quad \square 00.0 \quad \square 0.00 \quad \square .000$
Decimal for Accum. total	$\square 000 . \quad \square 00.0 \quad \square 0.00 \quad \square .000$
Count direction	\square count DOWN \square count UP
Start delay on relay 2	seconds
Pre-stop value on relay 2	
Automatic overrun comp.	AOC \square yes \square no
Missing pulse time-out	seconds
Batch limit	
Unit ID number (1~9)	($0=$ inhibit network function)

9.2 Error messages: ZOD-B1 has a series of error messages which are scrolled across the LCD display when ever an error condition exists.
No power indicates that the instrument is on battery power only and needs to be supplied with an external power source in order to operate.
No input (missing pulse detection) indicates that no pulses were received at the controller input within the time out period at any stage of the batch cycle. (see clause 4.9)

BATCH VALUE EXCEEDS

 BATCH LIMITThe new batch value will not be accepted because it exceeds the maximum batch limit value. (see clause 4.10)
PRE-STOP EXCEEDS
PRE-STOP EXCEEDS
BATCH VALUE
BATCH VALUE
The new batch value will not be accepted as it is less than the pre-stop value (clause 4.7)
WAIT
This message will show if the RUN button is pressed whilst the controller is in the process of assessing the degree o overrun from the previous batch when AOC is enabled.

10. ALPHABETICAL INDEX

\square LCD display4
Model number designation 2
Missing pulse detection6, 7
\mathbf{N} Networking 18, 19
0 Operation 5
Overrun compensation 13
OverviewP PIN number protection12
Pre-stop 12
ProgrammingProgram detail record20
Programming flow chart 14
R Relay control logic 11
Remote operating keys 10
Resetting totals 12
Run inhibit input 16
S Scale factor (K-factor) 12, 14
Single stage control10
Specifications 3
Start delay 12
Total Number of Batches 5
Two stage control 11
W Wiring connections 10, 11Wiring requirements

Universal Mount Series

ZOD-ZI BATTERY TOTAUSER

INSTRUCTION MANUAL

TABLE OF CONTENTS

To review software version No's press \&

1. INTRODUCTION

1.1	Model number designation
1.2	Specifications
1.3	Overview
1.4	LCD displays

2. OPERATION
2.1 Resettable total
2.2 Accumulative total
2.3 Keypad function matrix
$2.4 \quad$ Battery replacement
2.5 Processor reset button
3. INSTALLATION
3.1 Mounting
3.2 Flowmeter connections
3.3 Wiring connections
4. PROGRAM PARAMETERS
4.1 PIN number protection

42 Resetting accumulative total \quad -
$\begin{array}{lll}4.2 & \text { Resetting accumulative total } & 12 \\ 4.3 & \text { Engineering units } & 12\end{array}$
Engineering units
4.4 K-factor (scale factor)

Pulse output

- integral meter mounting $\quad 6$ panel mounting
wall / surface mounting
pipe mounting
- un-powered sensors
powered sensors
- Terminal designation
- Interface board layout
- Wiring practice

NPN pulse output
PNP pulse output
$4.5 \quad$ Pulse output
5. PROGRAMMING FLOW CHART 13
5.1 Program detail record 14
6. TROUBLESHOOTING 14
7. Declaration of Conformance 16
8. ALPHABETICAL INDEX 17

1. INTRODUCTION

Model	Housing Type	Electrical connection/ Cable gland	Supply Voltage	Options	Mechanical protection
zoD-Z1...	$\mathbf{K S}=$universal mount (standard) $\mathbf{K M}^{*}$ integral mount$\mathbf{0}=$= cable gland supplied (suits $3 \ldots 6 \mathrm{~mm} \varnothing$ cables)	$\mathrm{F3}=8 \ldots 24 \mathrm{VD}$, battery	$\mathbf{0}=$ without	$\mathbf{0 =}$ without	

Display:

Signal Inputs

Pulse output:

Physical:

Configuration

Functions: \quad Accumulated \& Resettable totals, pre-amplifier pulse output \& a scaleable pulse output. Low battery indication.

Configuration: Flow chart entry of data with English text prompts
User selectable 4 digit PIN number program protection.
Programmable engineering units, decimal points and K-factors. All programmed data protected with the battery.

K-factor range : Entered as pulses / litre, gallon, lb etc. Programmable range is 0.001~9,999,999.999 with a floating decimal point during K-factor (scale factor) entry.

Pulse output range: Entered as engineering units/pulse. Range is 0.1~9999.9 units/pulse

Engineering units : Selectable Ltr, Gal, m3, kgs, lbs, MLtr \& Mgal or no units of display.

1.3 Overview

The ZOD-Z1 series instruments are specifically designed for computing \& displaying totals from flowmeters with pulse or frequency outputs. They are battery powered or can be powered by an external $8 \sim 24 \mathrm{Vdc}$ regulated or I.S. certified supply

The instrument will display Resettable Total and an Accumulated Total in engineering units as programmed by the user. Simple PIN protected flow chart programming with English prompts guide you through the programming routine greatly reducing the need to refer to the manual.

Special Features
Standard : PIN Protection. Amplified non-scaled repeater or scaleable pulse output. NPN/PNP selectable pulse output.
Optional : Display backlighting (needs external dc power for this option to illuminate). Intrinsic Safety Certification to IECex scheme and ATEX directive.

Environments
The ZOD-Z1 series is designed to suit harsh indoor and outdoor industrial and marine environments. The robust housing is weatherproof to IP676 / IP67 standards, UV resistant, glass reinforced Polyamide with stainless steel screws \& FKM O-ring seals.

Installation
Specifically engineered to be directly mounted on a variety of flowmeters, wall, surface or pipe mounted in the field or control room. Various mounting kits are available. The instrument is self powered using one 3.6 Vdc lithium battery or I.S. battery pack, the pulse output option requires $8 \sim 24 \mathrm{Vdc}$.

1.4 LCD display

 can be programmed for up to 3 decimal places. Reset is only possible when in the program mode which can be PIN protected for security.

Full LCD display test feature illuminates all characters and script text displays for 5 seconds when entering the program mode.

The 5 digit Total display is front panel resettable and can be programmed for up to 3 decimal places.

Engineering units are selected during the initial programming routine.

Battery condition indicator shows only when battery is low, battery life can last up to $7 \sim 10$ years.

2. OPERATION

2.1 Resettable Total

Pressing the RESET key will cause the large 5 digit total to reset to zero. The reset function is possible at any time during counting.

2.2 Accumulative Total

There are 8 digits in the accumulative total display, these can only be reset in the program mode or can be protected by enabling the PIN protection feature at the front end of program mode.

2.3 Keypad functions

KEY	FUNCTION IN OPERATING MODE	FUNCTION IN PROGRAM MODE
RESET	Resets the 5 digit resettable total display to zero.	Resets the 8 digit accumulative total display to zero. Resets internal K-factor (scale factor) to zero
PROGRAM	1. Pressing the Program \& Reset keys for 5 seconds enters you into the program mode.	1. Each press steps you through each level of the program chart. 2. Holding for 3 seconds fast tracks to the END of the program from any program level.
	No function	Selects the digit to be set, the selected digit will be "flashing " indicating that it can be model \& software revision No. incremented.
No function	Increments the selected digit each time that it is pressed.	

2.4 Battery replacement

The instrument draws very little power and will run for many years* without the need to replace the battery. A battery condition indicator on the LCD display will appear when the battery is low, if the low battery is not replaced the programmed detail \& totals will be lost

When changing the battery a small capacitor within the instrument will maintain the programmed detail \& totals in memory for up to 10 seconds providing sufficient time for the battery change to take place. Changing the battery whilst flow is taking place could cause loss of the programmed detail. It is advisable to record program details prior to battery change.

* The battery can last 7~10 years depending on application \& environment.

2.5 Processor reset button

Should the instrument be corrupted by an electrical hit the processor can be reset by pressing the black re-boot button located above the red DIP switch block on the input interface board (refer page 10). This procedure does not effect totals or programmed data.

3. INSTALLATION

3.1 Mounting

Integral meter mounting

Panel mounting

Use only the 4 special length self tapping screws supplied

If using the cable gland supplied carefully drill a $12.5 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)$ hole at the underside or from the inside rear of
housing
Cable diameter range Cable dia

Wall - surface mount using optional bracket kit (P/No. AWM)

Pipe mounting ($P /$ No. APM)

APM adaptor pipe mount kit is suitable for vertical or horizontal pipes

3.2 Flowmeter connections (un-powered sensors)

3.2 Flowmeter connections (powered sensors)

3.3 Wiring connections

Terminal designation

$\mathbf{1}$	+	I/P	Flow input pulse signal
$\mathbf{2}$	-	Vref.	Flow input (coils \& voltage type inputs)
$\mathbf{3}$	gnd	GND	Flow input (pulse type inputs)
$\mathbf{4}$	+ Vdc	+ Vdc	External power , +8~24Vdc (see P14)
$\mathbf{5}$	$+\square$	O/P	Output pulse (J1 \& J3 selectable)
$\mathbf{6}$	-gnd	GND	External power

Interface board layout

Wiring practice

Use multi-core screened twisted pair instrument cable ($0.5 \mathrm{~mm}^{2}$) for electrical connection between the instrument and any remote flowmeter or receiving instrument. The screen needs to be earthed to the signal ground or the receiving instrument, this is to protect the transmitted signal from mutual inductive interference. Do not earth the screen at both ends of the cable.

Instrument cabling is not be run in a common conduit or parallel with power and high inductive load carrying cables, power surges \& power line frequencies may induce erroneous noise transients onto the signal. Run instrument cables in a dedicated low energy, low voltage conduit.

3.3 Wiring connections - pulse outputs

Current Sinking outputs (NPN)

Current sinking derives its name from the fact that it "sinks current from a load". The current flows from the load into the appropriate output (terminal 5).

Driving a logic input \qquad - The output voltage pulse is typically the internal voltage of the load. The load would normally have an internal pull up resistor on its input.

Driving a coil ------ The NPN style of output is to be used when driving a coil. The coil load is obtained by dividing the coil voltage by coil impediance (Ω), is expressed in amps \& is not to exceed 0.1 A . The coil voltage is connected across, \& must match, the ZOD-Z1 supply voltage \& the output (5).

Current Sourcing outputs (PNP)

Current sourcing gets its name from the fact that it "sources current to a load". The current flows from the output (terminal 5) into the load. When wired as below the output voltage pulse is the supply voltage of the load. The load would normally have an internal pull down resistor on its input.

4. PROGRAM PARAMETERS

4.1 PIN No. Program Protection

The option exists to protect the programmed detail \& Accum. Total with a user selected four digit PIN No. (0000 represents no PIN protection). If activated the user must input the correct PIN No., failure to do so will deny access to change any of the program parameters or reset the Accumulative Total but will allow the user to step through and view the program details.

Only one PIN number may be set but this can be changed at any time after gaining access through PIN entry. A second back up PIN number is installed at the factory should the programmed PIN be lost or forgotten. (refer page 14 for the back up PIN No.)

4.2 Resetting Accumulated Total

Resetting the accumulated total can only be done within the program mode.

4.3 Engineering Units (refer clause 1.4)

 Select from available Eng. units to right of the display. The ZOD-Z1 can display in engineering units not available on the LCD display by programming to "no eng. units" and a suitable Kfactor.
4.4 K-factor (scale factor)

Enter K-factor starting with the most significant number, up to 8 prime numbers \& 3 decimal numbers can be entered. Trailing decimal numbers move into view as digits to the right are progressively selected, any significant digits which may move from view remain functional.

4.5 Pulse output

The pulse output is NPN-PNP link selectable via jumper J1. It is also selected at jumper J3 to act as a non-scaled pre-amplified pulse output or scaleable pulse output, maximum load is 50mA.

Non-scaled pulse output:

The un-scaled repeater pulse output represents one pulse out for each input pulse from the primary measuring element (flowmeter). This output acts as an input signal pre-amplifier particularly suitable for pick-up coil inputs up to 5 Khz . The duty cycle of the output adopts the duty cycle of the input. The ZOD-Z1 needs to be externally powered for this feature to operate (see page 11).

Scaleable pulse output:

The fully scaleable pulse output is programmable as the number of litres / gallons etc. per output pulse Eg. 0.1 litres/pulse, 10 litres/pulse, 100 gallons/pulse. Range is $0.1 \sim 9999.9$ Eng. unit/pulse. The ZOD-Z1 needs to be externally powered for this feature to operate (p11).

The scaleable pulse output is suitable only for remote integration due to the spasmodic nature of its output frequency, it is limited to 8 hz . Should the potential incidence of this output exceed 8 hz it can continue to count after flow has stopped until such time as the processor buffer has completed integration. Most scaleable pulse output requirements are low frequency due to down scaling and therefore not effected by the buffer count effect.

5. PROGRAMMING FLOW CHART

5.1 Program detail record

If not powered for more than 10 seconds the programmed detail \& Accumulated Total will be lost from the processor memory, it is advisable to record your programmed detail below. Specific instructions on changing the battery without loss of program detail are given at clause 2.4, page 5.

Pencil your program details here

User selected PIN No.			0000	
Engineering units				litres
K-factor (scale factor)	$\mathrm{K}=$			1.000
Decimal for reset total	$\square 0$	$\square 0.0$	$\square 0.00$	$\square 0.000$
Decimal for Accum. total	$\square 0$	$\square 0.0$	$\square 0.00$	$\square 0.000$
Output pulse value				

6. TROUBLESHOOTING

\# No display.

Check position of the battery jumper J2 (see interface board layout page 10) \& check battery contact connections. Replace battery.

\# Display ghosting under external power.

The LCD display will "ghost" when the instrument is powered from an external 24 Vdc power supply, this is corrected by including two $1 / 4$ watt resistors $(1.2 \mathrm{~K} \& 3.3 \mathrm{~K})$ on the input power source as shown below.

\# Display shows model number at all times.

The instrument has not been fully programmed after power up, enter the program mode \& enter program parameters, be sure to exit the program mode before the 4 minute no data entry time out or the instrument will revert back to model number display.

\# Display ghosting under external power.

The LCD display will "ghost" when the instrument is powered from an external 24 Vdc power supply, this is corrected by including two $1 / 4$ watt resistors $(1.2 \mathrm{~K} \& 3.3 \mathrm{~K})$ on the input power source as shown below.

\# Scaleable pulse output counts on after flow has stopped.

The scaled pulse output has exceeded its output limit of 8 Hz . Allow the memory buffer to catch up or increase the pulse value - number of litres etc. per pulse, (clause 4.5, p12.)

\# Display shows random characters.

The instrument may have taken an electrical "hit", press the processor reset button (p10).

7. Declaration of Conformance

We, KOBOLD Messing GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Battery Totaliser Model: ZOD-Z1

to which this declaration relates is in conformity with the standards noted below:
Optional for Equipment intended for use in Potentially Explosive Atmospheres: ATEX Directive 94/9/EC

EN 50014: 1997 + Amds. 1 \& 2 Intrinsically Safe Electronics (I.S.) - Optional EN 50020: 2002 Intrinsically Safe Electronics (I.S.) - Optional

EN 60529, DIN VDE 0470-1 1992-11

I.P. Ingress Protection Classifications

EN 61326-1:

2006-10

Electrical equipment for control, instrumentation technology and laboratory use - EMC requirements (Industrial area)

EN 61010-1: 2002-08

Safety requirements for electrical equipment for measurement, control, and laboratory use -

2008/35/EC Waste Electrical \& Electronic Equipment (WEEE)

Also the following EEC guidelines are fulfilled:

2004/108EC 2006/95 EC

EMC Directive
Low Voltage Directive

para. Newell

Hofheim, 18. Oct. 2010

H. Peters General Manager
M. Wenzel Proxy Holder

Accumulative total

Battery condition indicator
Battery replacement 5

Battery jumper

D DC power (powering) 3 Decimal points 12
Displays

E Engineering units External DC powering

Flowmeter connections

Input signal Interface board Installation

Keypad functions K-factor (scale factor)
\square LCD display410 4

Wiring connections Wiring practice
0 OperationPIN number protection
Processor reset button
Programming
Program detail record
Pulse output
\mathbf{R} Resettable total

Resetting the processorScale factor (K-factor)

Specifications

Terminal designation
Terminal layout
Troubleshooting

Overview \& Options 4
5

3, 11

Resetting accumulative total 5, 12

Scaleable pulse output 12

14, 15

10

Universal Mount Series

ZOD-Z3 FIOU RATE TOTAUSER

INSTRUCTION MANUAL

Software version

V 3.2	16.12 .04
V 3.3	27.04 .07

PROG

Press \& hold Program key to show instrument model \& software version

Replacement Batteries:

> KOBOLD supplied batteries :

Suitable non I.S. batteries also available from :

R S Components
Stock No. 596-602

Farnell Components
Order code 206-532

TABLE OF CONTENTS

1. NTRODUCTION
$1.1 \quad$ Model number designation 2
1.2 Specifications 3
1.3 Overview 4
1.4 LCD displays 4
2. OPERATION
2.1 Accumulative total display 5
2.2 Resettable total display 5
2.3 Rate display 5
2.4 Low frequency cut-off 5
2.5 Inhibit total function 5
2.6 Keypad function matrix 6
3. INSTALLATION
3.1 Mounting - wall / surface mount 6

- pipe mount 7
- panel mount 7
3.2 Flowmeter connections - unpowered sensors 8
- powered sensors 9
3.3 Wiring connections - external powering 10
- 4~20mA loop powering 10
- wiring requirements 10
- pulse outputs 11
- alarm outputs 11
- remote switches 18

4. PROGRAM PARAMETERS
4.1 PIN number program protection 12
4.2 Resetting accumulative total 12
4.3 Engineering units 12
4.4 K-factor (flow input scale factor) 12
$4.5 \quad$ Rate conversion factor 12
$4.6 \quad$ Rate dampening (see response graph page 19) $12 \& 19$
$4.7 \quad$ Low frequency cut-off (refer clause 2.4 page 5) 5
$4.8 \quad$ Pulse outputs (scaleable or non-scaleable) 12
4.9 Non linearity correction (NLC) Linearisation 12
4.10 Presetting battery power levels 13
5. ADDITIONAL PROGRAM PARAMETERS
5.1 Analog output 13
5.2 Flow alarms 13
5.3 Flow alarm deadband 13
5.4 Dual flow inputs 13 \& 20
6. PROGRAMMING
6.1 Program levels 1~7 14
Program levels 8~13 15
6.2 Program levels 14~24 16
6.3 Program detail record 17
7. TERMINAL LAYOUT, SELECTION LINKS \& REMOTE SWITCHES 18
8. DECLARATION OF CONFORMANCE 21
9. ALPHABETICAL INDEX 22

1.1 Model number designation

Model	Housing Type	Electrical connection/ Cable gland	Supply Voltage	Options	Mechanical protection
$\begin{aligned} & \text { ZOD- } \\ & \text { Z3... } \end{aligned}$	$\left.\begin{array}{rl} \text { KS }= & \text { universal mount } \\ \text { (standard) } \end{array}\right\}$	1 = $3 \times$ cable entry M20 $\begin{gathered} 2=3 \times \text { cable entry } \\ 1 / 2^{2} \mathrm{NPT} \\ \hline \end{gathered}$	$$	$\begin{aligned} & 0=\text { without } \\ & R^{3}=2 \times \text { Relay } \\ & (\text { for ZOD-Z3K) } \end{aligned}$	0 = without
	$\begin{array}{\|l} \text { PP = panel mount } \\ \text { (IP20) } \end{array}$	$\mathbf{0}^{\mathbf{2}}=$ screw terminal			$\mathbf{S}^{2)}=$ silicone bezel boot

${ }^{1)}$ order only when retrofitting a pulse meter
${ }^{2)}$ only possible with ZOD-Z3PP...
${ }^{3)}$ only possible w ith ZOD-Z3K ... Options "R" and "E" cannotbe com bined

Part No.

ERS-ZOD-1522001
ERS-ZOD-1522002
ERS-ZOD-1522011
ERS-ZOD-1522005
ERS-ZOD-1522006
ERS-ZOD-1323006
ERS-ZOD1323011
ERS-ZOD-1322071
ERS-ZOD-
132822101
ERS-ZOD-1334001
ERS-ZOD-1412063

ACCESSORIES FOR ABOVE SERIES

stainless steel wall mount kit
stainless steel 2" pipe mount kit
DRT series cooling fin kit for flowmeters with integral instruments
DOR \& Turbine stem adaptor - metric (M16 to M20)
DOR \& Turbine stem adaptor - USA (M16 to 1/2" NPT)
DOR-42 stem (100 mm effective height, threaded M16 male)
DOR-52 stem (350mm effective height, threaded M16 male)
3/4" BSPF fixed stem for Turbine flowmeters (3/4" BSPF to M16)
1" NPTF universal swivel stem for Turbine flowmeters ($3 / 4^{\prime \prime}$ BSPF to M16)
DC switch mode DIN mount power supply - 100~240Vac input
Relay contol output board with two SPCO relays

1.2 Specifications

Display: 8 digit alpha numeric LCD characters 9 mm (0.35 ") high with second line sub script text, 8 digits totalising, 5 digits rate. Programmable $0 \sim 3$ decimal places for all displays.

Signal Input: Universal pulse/frequency input compatible with Reed switch, Hall effect, Namur proximity detectors, Pulse wire, voltage, current \& Coil (15mV P-P min). Max. input frequency 10Khz.

Minimum input frequency for rate display is 0.1 hz with low frequency cut off feature enabled, 0.3 hz when disabled \& 0.7 hz if the non-linearity feature is enabled. Totals have no minimum.

Battery power: Battery life expectancy can be up to $5 \sim 10$ years when programmed with the unique "Ultra Power Save" sleep cycle. Battery life reduces when connected with a coil input from turbine flowmeters. Rate display defaults to total display 4 minutes after pressing the rate key in order to conserve battery power. (reverse polarity protected)

External power : Regulated 8~24Vdc x 150mA or 4~20mA loop powered.
Memory : All programmed \& accumulated data is stored permanently in non-volatile memory.
Pulse output: NPN-PNP transistor, scaleable (50hz max.) or non-scaleable (5000 hz max.), 1A maximum drive capability.

Analog output: Two wire loop powered, 12~28Vdc into 100~900 loop load, accuracy $+/-0.25 \%$ FS, key entry programming of Zero \& Span.

Alarm outputs: Two NPN-PNP selectable FET (transistors) programmable low \& high flow alarm with adjustable deadband (reset differential). Maximum drive 100 mA resistive load. 24 Vdc max.

Physical: A) IP66 / 67 high impact glass reinforced Polyamide enclosure.
B) $3 \times \mathrm{M} 20$ or $1 / 2^{\prime \prime}$ NPT female conduit entries.
C) 125 mm diameter ($5^{\prime \prime}$) $\times 61 \mathrm{~mm}$ deep ($2.5^{\prime \prime}$) $\times 400 \mathrm{~g}(0.91 \mathrm{~b})$.
D) Temperature range from $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$.

Configuring: PIN protected data entry with scrolling English text prompts.
K-factor range : Eg. Pulses/litre, gallon, lb etc. Programmable range is $0.001 \sim 9999999.999$ with a floating decimal point during K-factor entry.

Engineering units : Selectable Ltr, gal, m3, kgs, lbs (total). /sec,min,hr or day (rate).
Rate conversion: Enables the rate to be displayed in different engineering units to that of the totals eg: totals in barrels (oil) \& rate in US gallons.

Battery modes: Ultra power save, standby or continuous display selectable.
Dual Input option :Programmable for computations of $\mathrm{A}+\mathrm{B}, \mathrm{A}-\mathrm{B}$, or $\mathrm{A} \div \mathrm{B}$ (ratio).

1.3 Overview

The ZOD-Z3 is specifically designed for computing, displaying and transmitting totals and flowrate from flowmeters with pulse or frequency outputs.

The instrument will display Flow Rate, Resettable Total and an Accumulated Total in engineering units as programmed by the user. Simple flow chart programming with scrolling English prompts guide you through the programming routine greatly reducing the need to refer to the instruction manual. All user program data is retained if the battery is removed.

Environments

The ZOD-Z3 is weatherproof to IP66/67 (Nema 4X) standards, UV resistant glass reinforced Polyamide with stainless screws \& FKM O-ring seals. The instrument suits harsh indoor and outdoor environments \& conforms to EMC directive 89/336/EEC Electro Magnetic Compatibility.

Features

10 point Linearisation, PIN Protection, NPN/PNP selectable autoranging pulse outputs (scaled or un-scaled), Low frequency cut-off, Battery conservation mode, 4~20mA output, High / Low flow alarms with adjustable deadbands, Dual inputs. Optional I.S. certification to ATEX directive, for conforming standards refer to I.S. supplement.

Conforming standards include:

> EN 61326 (immunity in industrial locations)
> EN 62326 (emissions in industrial locations)
> EN 60529 (degrees of protection [IP])

Installation

Specifically engineered to be directly mounted on a variety of flowmeters, wall or surface mounted, pipe or panel mounted. Various mounting kits are available. The instrument can be self powered or may be powered by an external dc supply or two wire loop powered.

1.4 LCD displays

TOTAL

Full LCD display test feature illuminates all display segments and script text displays for 5 seconds when entering the program mode.

Rate display has flashing SEC, MIN, HR or DAY followed by up to 5 digits of rate programmable for up to 3 "floating" decimal places.

The 8 digit Total display is push button or remote resettable and can be programmed for up to 3 decimal places.

The 8 digit Accumulative Total display can be programmed for up to 3 decimal places. Reset is only possible when in the program mode which can be PIN protected for security.

2. OPERATION

2.1 Accumulative Total

Accumulative total can be reset at $L 2$ in the program mode. The accumulative total can be displayed momentarily or continuously through use of the front panel ACCUM TOTAL key.

Momentary display: Accumulative total is displayed only whilst the key is held pressed.
Latching display : To have the accum. total display latch when key is pressed simply press \& hold the ACCUM TOTAL key for 10 seconds, the display will then latch each time the key is pressed. Holding the accumulative total key again for 10 seconds will revert this key function back to a momentary action.

2.2 Resettable Total (also see page 18 for remote reset feature)

The display toggles between Rate \& Total when the RATE-TOTAL key is pressed.
Pressing the RESET key whilst displaying total will cause the total to reset to zero.

2.3 Rate display

When rate is displayed the leading three alpha characters on the left of the display "flash " the time base for rate eg. rate $/ \underline{S E C}$. rate $/ \underline{M I N}$. rate $/ \underline{H R}$. or rate / DAY. Decimal points float to provide good resolution \& rangeability.

The minimum input frequency for rate display is 0.3 hz reducing to 0.1 hz If the low frequency cut-off is set to 0.1 Hz (see below) \& 0.7 Hz with NLC enabled.

2.4 Low frequency cut-off

The low frequency cut-off is most commonly set to 0.0 Hz (disabled) other than to:

1) To display rate for input frequencies below 0.3 hz , for example setting the cut-off at 0.1 Hz the rate will continue to display for input frequencies as low as 0.1 Hz (one pulse every 10 seconds), such conditions often apply to flowmeters with low resolution pulse outputs (low frequency) or flowmeters with a high operational turndown (maximum to minimum flow rate).
2) Inhibit the integration \& registration of "apparent flow" which at times may be encountered on mobile installations where the movement of the vehicle or dead heading a pulsating pump may cause spurious flow signals which are not attributed to actual flow.
3) Inhibit the integration \& registration of flow at input frequencies below what is considered the minimum accurate flow rate of the primary flow element (flowmeter).

Caution: If the low frequency cut-off is set to any value other than 0.0 Hz then the integration of rate and total will cease at frequencies on or below the set value (HERTZ).
2.5 Inhibit total (see wiring schematic page 18)

With the remote "inhibit total" switch closed the ZOD-Z3 with display flow rate but at the same time will inhibit the resettable \& accumulative totalising functions.

2.6 Keypad function matrix

KEY	FUNCTION IN OPERATING MODE	FUNCTION IN PROGRAM MODE
$\begin{aligned} & \text { Accum } \\ & \text { TOTAL } \end{aligned}$	Displays Accumulative Total when pressed. (refer clause 2.1 for options)	No function
${ }^{\mathrm{KAFT}}$	Toggles between Rate \& resettable Total displays.	No function
RES	Resets the resettable total display to zero when it is being displayed.	No function
PROG	1) Pressing the Prog. \& Rate/Total keys for 5 seconds enters you into the program mode. 2) Displays model \& software revision No.	1) Each press steps you through each level of the program chart. 2) Holding for 3 seconds fast tracks to the end of the program from any program level.
	No function	Selects the digit to be set, the selected digit will be "flashing" indicating that it can be incremented.
	No function	Increments the selected digit each time that it is pressed.

3. INSTALLATION

3.1 Remote Mounting

3.1 Remote Mounting (continued)

* order Pipe mount kit P/No. ERS-ZOD152202 comprising two brackets, screws and worm drive clamps.

Conduit entries have an integral moulded seal, to remove break seal out using suitable lever (eg. screwdriver or rod)

Cut a 106.5 mm (4.2 ") diameter hole in panel
3.2 Flowmeter connections - unpowered sensors
(for I.S. installations refer to I.S. supplement)

Flow input A \& B switch functions

Flow Input B

Flow Input A

Terminals $1,2 \& 5$ replicate terminals $3,4 \& 5$ for dual flow inputs
Switch 1 : ON engages $0.01 \mu \mathrm{f}$ capacitor to suppress reed switch bounce
Switch 2 : ON engages 1 meg Ω pull up resister
Switch 3 : ON engages 820Ω pull down resister

1. Reed switch (200hz max.)

2. Voltage Pulse (\& pulse wires)

3. Coil (Turbine \& paddle style flowmeters - minimum $15 m \mathrm{~V} p-\mathrm{p}$)

3.2 Flowmeter connections - powered sensors

(for I.S. installations refer to I.S. supplement)

4. Hall effect (5~24Vdc open collector)

5. Namur (inductive proximity switch)

DIP SW3 (pull down) is on

6. Current modulated pulse (4mA to $20 m A$ pulse amplitude)

3.3 Wiring connections (for I.S. installations refer to I.S. supplement)

External DC powering - required for powered flow sensors, flow alarms or pulse outputs \& dual flow inputs.

CAUTION :

Avoid using low cost digital switch mode power packs

Powering via 4~20mA loop

(Negative referenced)

> Loop load specification: $\mathbf{R}=(\mathbf{V}-\mathbf{1 0}) / 0.02$
> where : $\mathbf{V}=$ loop voltage, $\mathbf{R}=\max$ load Ω

Powering via 4~20mA loop

(Positive referenced)

Optional wiring

When wired in this manner the one loop power supply (limited to 24 Vdc) may be used to also power active flow sensors, scaled pulse \& alarm outputs at terminals $7,13 \& 14 \& /$ or multiple RT's if required.

Wiring requirements: Use multi-core screened twisted pair instrument cable ($0.25-0.5 \mathrm{~mm}^{2}$) for electrical connection between the ZOD-Z3 and any remote flowmeter or receiving instrument. The screen needs to be earthed to the signal ground of the receiving instrument only to protect the transmitted signal from mutual inductive interference.

11 Installation

Pulse \& Alarm Outputs

Current Sinking outputs (NPN)

Current sinking derives its name from the fact that it "sinks current from a load". When activated the current flows from the load into the appropriate output ($7,13 \& 14$).

Driving a logic input The output voltage pulse is typically the internal voltage of the load. The load would normally have an internal pull up resistor on its input as shown.

Driving a coil \qquad The NPN style of output is to be used when diving a coil. The coil load is obtained by dividing the coil voltage by coil impediance (Ω), is expressed in amps \& is not to exceed 0.1 A. The coil voltage is connected across \& must match the ZOD-Z3 supply voltage \& the output (7,13 \& 14).

Current Sourcing outputs (PNP)

Current sourcing gets its name from the fact that it "sources current to a load". When activated the current flows from the output $(7,13 \& 14)$ into the load. When wired as below the output voltage pulse is the supply voltage of the load. The load would normally have an internal pull down resistor on its input as shown.

4. PROGRAM PARAMETERS

Note: The ZOD-Z3 defaults out of the program mode if no programming entries are made after 4 minutes.

4.1 PIN No. Program Protection

Any user defined PIN number other than 0000 will engage the program protection feature, failure to input the correct PIN number will deny the ability to change any of the program parameters but will allow the user to step through and view the existing program parameters.

Only one PIN number may be set but this can be changed at any time after gaining access through PIN entry. A second back up PIN number is installed at the factory should the programmed PIN be lost or forgotten. (refer bottom of page 17 for the back up PIN No.)

4.2 Resetting Accumulated Total

Resetting the accumulated total can only be done at level 2 (L2) in the program mode.

4.3 Engineering Units (refer clause 1.4)

Select from available Engineering units to right of the display. For other engineering units set display to show no engineering units \& program a suitable K-factor.

4.4 K-factor (scale factor)

Enter K-factor starting with the most significant number, up to 7 whole numbers \& 3 decimal numbers can be entered. Trailing decimal numbers move into view as digits to the right are progressively selected, any significant digits which may move from view remain functional.

4.5 Rate conversion factor

A rate conversion feature is available \& is explained at level 6 in the program chart (page 14). When enabled the analog output under rate conversion needs to be programmed in relation to the "TOTAL" engineering units.

4.6 Rate dampening

Dampening is available to smooth out fluctuating flow input signals in order to provide a stable rate display \& analog output. Most input signal are reasonably stable and need only a low setting value of 40 to 70 (see response graph on page 19).
4.7 Low frequency cut-off This feature is explained in clause 2.4 (page 5).
4.8 Pulse Outputs (for this feature the ZOD-Z3 must be externally powered as per page 10) The pulse output is link selectable as a scaleable pulse or non-scaled repeater pulse \& NPN (current sinking) or PNP (current sourcing) style pulse capable of switching up to 1 amp . Pulse scaling, when selected, is set as the number of litres I gallons etc. per output pulse Eg. 0.1 litres/pulse, 10 litres/pulse, 100 gallons/pulse. Range is 0.1 - 9999.9 Eng.unit/pulse. The totalising display visually slows to two updates/sec. if the scaled pulse output is selected. The pulse width (pulse duration 1:1) automatically adjusts to the output frequency defaulting to a maximum pulse width of 300 milliseconds at frequencies below 1.66 hz . To calculate pulse width at higher frequencies use: $1000 \div$ (hz x 2) = pulse width in milliseconds.

4.9 Non Linearity Correction (NLC) - Linearisation

Linearisation enables the instrument to correct for known inaccuracies in a flowmeter thereby improving the overall accuracy and in many cases increasing the effective flow range (turndown) of the flowmeter. Refer to program level L12, page 15 for setting NLC points. NLC can be used without external power however, battery life is reduced according to usage.

4.10 Presetting battery power levels

When the instrument is operated under battery power only a special "Power Mode" program option will appear at level 13 within the programming routine. A choice of three battery power modes enable maximisation of the battery life according to operational requirements:

Ultra Power Save: Typically selected if reading the register infrequently. The display scrolls a Prompt "PRESS ANY KEY", when a key is pressed display wakes up for 4 minutes then returns to sleep mode* greatly extending the battery life.

Standby: Display becomes active whenever a key is pressed or product flows through the flowmeter. Display returns to sleep mode* after 4 minutes of no flow input or key actions, prompt then returns to "PRESS ANY KEY".

Continuous: \quad Display is active at all times resulting in reduced battery life. Display reverts from Rate to Total after 4 minutes to reduce battery draw.

* In sleep mode (and programming mode) flow is always continually totalised.

When the battery voltage is low a battery low indicator will appear on the display.

5. ADDITIONAL PROGRAM PARAMETERS

5.1 Analog Output (loop powered)

The loop powered 4~20mA output can be spanned anywhere within the flow meter range. Testing the current loop is available during programming when 4 mA will output at programming level L15 and 20 mA will output at level L16 (page 16).). Note. If using the Rate Conversion Factor (RCF) the span for 20 mA must be set in relation to the total units, not the rate units.
5.2 Flow Alarms (The ZOD-Z3 must be externally powered as per page 10) Two flow alarm FET (transistor) outputs may be programmed for Low \& High flow alarms.

5.3 Flow Alarm Deadband

Alarms are NPN/PNP link selectable. An adjustable deadband (reset differential) provides a trip buffer zone about the set point in order to overcome alarm "chattering" when the flow rate is fluctuating close to the alarm set point. Deadband is entered as \% of each set point value (refer to page 16 for an example).

5.4 Dual Flow Inputs (see also page 20 for complete description)

When externally powered at terminals $5 \& 6$ the ZOD-Z3 accepts inputs from two sources (input A \& input B), a separate scaling factor is entered for the second flow input, the instrument is then programmed for one of the dual input functions of $\underline{A+B}, \underline{A-B}$ or $\underline{A} \div B$ (ratio).

A+B Both inputs are added and displayed as one for Rate \& Totals.
A-B Input B is subtracted from input $A \&$ the difference is displayed for both Rate \& Totals.
$A \div B$ Totalises A \& B separately \& Rate is a function of $A \div B$ to give instantaneous ratio.
Note : - When using A \& B inputs the functions of Scaled Pulse output, Alarm set points and the Analog output are relevant to resultant computation between A \& B. - The analog output of function $\mathrm{A} \div \mathrm{B}$ can be used as an input for ratio control.

6. PROGRAMMING

6.1 Program levels 8 ~ 13

L8 SET RATE DAMPENING

L9 SET LOW FREQUENCY CUT-OFF
HERTZ 0.0~9.9

OF 0000.0 (set output freq. at point 0)

| 1F 0000.0 (set output freq. at point 1) |
| :--- | :--- |
| $\underline{000000.000 ~(~ s e t ~ K-f a c t o r ~ a t ~ p o i n t ~ 1) ~}$ |

10 points from 0 F up to 9 F
9F 0000.0 (set output freq. at point 9)
$\underline{000000.000 ~(s e t ~ K-f a c t o r ~ a t ~ p o i n t ~ 9) ~}$

Low frequency cut-off

The low frequency cut-off is generally set to 0.0 Hz (disabled) for most applications other than those described at clause 2.4 on page 5

Non-linear correction (NLC)
 (overrides K-factor set at L4)

1) Any number up to 10 frequency points of nonlinearity can be programmed with point $O F$ being the pulse output frequency at the lowest flow rate.
2) If any frequency point is set to zero Hz then all remaining NLC points up to point 9F will automatically assume the last entered NLC K-factor and the program will advance to the next level. This feature simplifies programming when not all points of correction are used.
3) Linear interpolation is used between frequency points, except above the last entered frequency where the last entered NLC K-factor is applied.

6.2 Program levels 14~24

Program detail record
Pencil your program details here

L1	User selected PIN No.			
L3	Engineering units			
L4	K-factor (scale factor)	$\mathrm{K}=$		
L5	Decimal for reset Total	$\square 0 \quad \square$	$0.0 \quad \square 0.00$	$\square 0.000$
	Decimal for Accum. total	$\square 0 \quad \square$	$0.0 \square 0.00$	$\square 0.000$
	Decimal for Rate	$\square 0 \quad \square$	$0.0 \quad \square 0.00$	$\square 0.000$
L6	Rate conversion factor	\square yes \square no	RCF=	
L7	Time base for Rate	Units / \square Sec \square Min $\square \mathrm{Hr}$		\square Day
L8	Rate dampening			
L9	Low frequency cut-off			
L10	Pulse output	\square yes \square no \quad L11 pulse value $=$	L11 pulse value $=$	
L12	Non linear correction - frequency 0	\square yes \square		$\square \text { no }$
		OF Hz	K-factor =	
	- frequency 1	1F Hz	K-factor =	
	- frequency 2	2F Hz	K-factor =	
	- frequency 3	3F Hz	K-factor =	
	- frequency 4	$4 \mathrm{~F} \quad \mathrm{~Hz}$	K-factor =	
	- frequency 5	$5 \mathrm{~F} \quad \mathrm{~Hz}$	K-factor =	
	- frequency 6	6F Hz	K-factor =	
	- frequency 7	$7 \mathrm{~F} \quad \mathrm{~Hz}$	K-factor =	
	- frequency 8	$8 \mathrm{~F} \quad \mathrm{~Hz}$	K-factor =	
	- frequency 9	$9 \mathrm{~F} \quad \mathrm{~Hz}$	K-factor =	
L13	Power mode	\square Ultra save \square Standby $\quad \square$ Continuous		
	Analog output			\square yes $\quad \square$ no
	- zero set point	4mA @		
	- span set point	20mA @		
L17	Alarm outputs	\square yes $\quad \square \mathrm{no}$		- $\square \mathrm{no}$
	- low set point	@		
L19	- low deadband	percentage	\%	
L20	- high set point	@		
L21	- high deadband	percentage	\%	
L22	Dual flow inputs - K-factor for B input - dual input function	\square yes $\quad \square \mathrm{no}$		
L23		$\mathrm{K}=$		
L24		$\square \mathrm{A}+\mathrm{B}$	\square A-B	$\square \mathrm{A} \div \mathrm{B}$

7. TERMINAL DESIGNATION

Terminals $1,2 \& 5$ replicate terminals $3,4 \& 5$ for dual flow inputs

Terminal
$\left[\begin{array}{cc}\left.\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right] \begin{array}{c}\text { Flow } \\ \text { input B } \\ \text { Flow } \\ \text { input } A\end{array} \\ 6 & -0 \mathrm{~V} \text { (ground) } \\ 7 & +8 \sim 24 \mathrm{Vdc} \text { in } \\ 7 & \text { Pulse output }\end{array}\right.$

Terminal

High flow alarm	14
Low flow alarm	13
$+4 \sim 20 \mathrm{~mA}$ output	12
$-4 \sim 20 \mathrm{~mA}$ output	11
not used	10
not used	9
$-\mathbf{0 V}$ (ground)	8

Terminal layout - links \& remote switch inputs

Rate dampening value verses time to reach new reading (for an instantaneous change in actual flow rate).

Dual flow inputs

When externally powered at terminals 5 \& 6 the ZOD-Z3 provides a dual flow input feature which can be configured for one of three available functions of $\underline{A+B}, \underline{A-B}$ or $\underline{A \div B}$ (ratio).

The dual flow inputs are referred to as "INPUT A" at terminals $3 \& 4$ and "INPUT B" at terminals $1 \& 2$.

Function A+B

Both inputs are added together and displayed as one for Rate, Resettable \& Accumulative Totals.

Displays	Rate Reset Total Accum. Total	: The total of $A+B$ flow rates displayed as one rate. : The total of $A+B$ totals displayed as one total. : The total of $A+B$ accum.totals displayed as one total.		
Outputs			\quad	Scaled Pulse
:---	\quad	: Scaled pulse value is relative to the totalised values.		
:---				

Function A-B

Input B is subtracted from input A, the resultant is displayed as one for Rate, Resettable \& Accumulative Totals.
$\left.\begin{array}{lll}\text { Displays } & \begin{array}{l}\text { Rate } \\ \text { Reset Total } \\ \text { Accum. Total }\end{array} & \begin{array}{l}\text { : The difference of } A-B \text { flow rates displayed as one rate } \\ \text { : The difference of } A-B \text { totals displayed as one total. } \\ \text { : The difference of } A-B \text { accum.tot. displayed as one total. }\end{array} \\ \text { Outputs }\end{array} \quad \begin{array}{ll} \\ \text { Scaled Pulse }\end{array} \quad \begin{array}{l}\text { : Scaled pulse value is relative to the totalised values. }\end{array}\right\}$

Function $A \div B$

Input A is divided by input B, the resultant is displayed as an instantaneous Ratio, Resettable \& Accumulative Totals are independently displayed for both A \& B inputs.

Displays	Rate	: The resultant Ratio between $\mathrm{A} \div \mathrm{B}$ flow rates displayed as an instantaneous Ratio.
	Reset Total input A	: The total of input A .
	Reset Total input B	: The total of input B.
	Accum. Total input A	: The Accumulative total of input A .
	Accum. Total input B	: The Accumulative total of input B.
Outputs	Scaled Pulse	: The scaled pulse output relates to input A
	* Alarms	: Alarms are taken relative to the displayed ratio.
	* Analog Output	$: 4 \sim 20 \mathrm{~mA}$ output is proportional to the displayed ratio.

- Note: The alarm and analog outputs for the $A \div B$ function are set in the initial stages of programming in relation to rate units eg: setting the analog output range to $4 \mathrm{~mA}=00.000$ litres $/ \mathrm{min}$ and $20 \mathrm{~mA}=10.000$ litres/min, the analog output will be proportional to the ratio rate display of $0.000 \sim 10.000$ (eg. 4mA @ 0.000 and $20 \mathrm{~mA} @ 10.000$). The same set up analogy applies to the alarm settings.

7. Declaration of Conformance

We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Flow Rate Totaliser Model: ZOD-Z3K

to which this declaration relates is in conformity with the standards noted below:
Optional for Equipment intended for use in Potentially Explosive Atmospheres: ATEX Directive 94/9/EC

EN 50014: 1997 + Amds. 1 \& 2 Intrinsically Safe Electronics (I.S.) - Optional
EN 50020: 2002 Intrinsically Safe Electronics (I.S.) - Optional
EN 60529, DIN VDE 0470-1 1992-11
I.P. Ingress Protection Classifications

EN 61326-1:
2006-10
Electrical equipment for control, instrumentation technology and laboratory use - EMC requirements (Industrial area)

EN 61010-1: 2002-08

Safety requirements for electrical equipment for measurement, control, and laboratory use -

2008/35/EC Waste Electrical \& Electronic Equipment (WEEE)
Also the following EEC guidelines are fulfilled:
$\begin{array}{ll}\text { 2004/108EC } & \text { EMC Directive } \\ \text { 2006/95 EC } & \text { Low Voltage Directive }\end{array}$

M. Wenzel

Proxy Holder

8. ALPHABETICAL INDEX

A Accumulative total 5
Alarm deadband 13
Alarm outputs 11, 13
Analog output 13

B Battery power levels 13

D DC power 10
Decimal point 14
Displays 4
Dual flow inputs 13, 20

E Engineering units 4, 12
External DC powering
10

F Flowmeter connections 8, 9
Flow rate
5, 12

I Inhibit totals 5, 18
Installation
$6 \sim 11$
Input signals
8, 9

K Keypad functions
6
K-factor (scale factor) 12, 14
L LCD displays 4

Loop powering 10
Link selectors (for outputs) 18
Low frequency cut-off 5

M Model number designation
$\begin{array}{ll}\text { Mounting options } & 6,7\end{array}$

Manufactured and sold by:

Kobold Messring GmbH
Nordring 22-24
D-65719 Hofheim
Tel.: +49(0)6192-2990
Fax: +49(0)6192-23398
E-Mail: info.de@kobold.com Internet: www.kobold.com

9. Declaration of Conformance

We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Flow Rate Totaliser Model: ZOD-Z5

to which this declaration relates is in conformity with the standards noted below:
Optional for Equipment intended for use in Potentially Explosive Atmospheres: ATEX Directive 94/9/EC

EN 50014: 1997 + Amps. 1 \& 2 Intrinsically Safe Electronics (I.S.) - Optional
EN 50020: 2002 Intrinsically Safe Electronics (I.S.) - Optional
EN 60529, DIN VDE 0470-1 1992-11
I.P. Ingress Protection Classifications

EN 61326-1:

2006-10
Electrical equipment for control, instrumentation technology and laboratory use - EMC requirements (Industrial area)

EN 61010-1: 2002-08

Safety requirements for electrical equipment for measurement, control, and laboratory use -

2008/35/EC
Waste Electrical \& Electronic Equipment (WEEE)
Also the following EEC guidelines are fulfilled:

2004/108EC

 2006/95 EC
EMC Directive

Low Voltage Directive

pro. Nicked

Hofheim, 17. Sep. 2010
H. Peters General Manager
M. Wenze Proxy Holder

Universal Mount Series

$\mathbf{Z 5}$ fLOW RATE TOTAUISER

with backlighting \& flow alarms
INSTRUCTION MANUAL

Press \& hold Program key to show instrument software version

Replacement Batteries:

battery

P/No. 1312007

Suitable batteries also available from:

R S Components	Farnell Components
Stock No. 596-602	Order code 206-532

7. PANEL MOUNT DRILL TEMPLATE 18
8. Supplement 20
9. Declaration of Conformance 22

Model	Housing Type	Electrical connection/ Cable gland	Supply Voltage	Options	Mechanical protection
zOD-Z5...	KS $=$ universal mount (standara) KM $=$ integral mount	$2=3 \times$ cable gland entry $1 / 2^{\prime \prime}$ NPT $3=3 \times$ cable gland entry M16	F3 $=8 . . .24 \mathrm{~V}_{\mathrm{DC},}$ battery,	$\mathbf{0}=$ without $\mathrm{R}=2 \times$ Relays	$\mathbf{0}=$ without $\mathrm{P}=$ display protection plate

1.2 Specifications

Display : Large backlit 6 digit numeric display with LCD characters 17 mm ($0.67{ }^{\prime \prime}$) high, second line of 8 digits $\times 7 \mathrm{~mm}$ high totalising plus 5 digits of rate indication. Programmable $0 \sim 3$ decimal places for all displays.

Signal Input: Universal pulse/frequency input compatible with Reed switch, Hall effect, Namur proximity detectors, voltage, current \& Coil (15 mV P-P min). Max. input frequency 5 Khz .

Minimum input frequency for rate display is 0.1 hz with low frequency cut off feature enabled, totals have no minimum input frequency when low frequency cut off is set to zero.

Battery power: The unit draws about 70uA under battery, life expectancy is generally 3 years. Battery life reduces when rate is more often displayed \& there is no external power connected.. Rate display defaults to total display 1 minute after pressing the rate key in order to conserve battery power. (reverse polarity protected)

Battery condition is continuously monitored internally, the instrument runs on 3.6 Vdc , the battery icon illuminates when the battery output falls below 3.1 Vdc , at this point the instrument will continue to operate for a short period but the battery should be change as soon as possible, batteries are readily available from all major electronic component suppliers (see page 2 for details).

External power : Regulated 8~24Vdc x 50 mA minimum.
Memory :
All programmed \& accumulated data is stored permanently in non-volatile memory.
Pulse output: NPN transistor, scaleable, 5Khz max. 100mA maximum drive capability.
Physical: A) IP66 / 67 aluminum alloy with 0.3% magnesium (6% is maximum for mine sites),
B) $3 \times \mathrm{M} 16 \times 1.5$ female conduit entries.
C) $114 \mathrm{~mm}\left(4.5^{\prime \prime}\right)$ wide $\times 96 \mathrm{~mm}\left(3.8^{\prime \prime}\right)$ high $\times 62 \mathrm{~mm}$ deep ($\left.2.5^{\prime \prime}\right) \times 480 \mathrm{~g}(1 \mathrm{~b})$.
D) Temperature range from $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$.

Configuring: PIN protected data entry.
K-factor range : (scale factor) Eg. Pulses/litre, gallon, Ib etc. Programmable range is 0.001~ 99,999.999 with a floating decimal point during K-factor entry.

Engineering units : Selectable Ltr, gal, m3, kgs, lbs (total). /sec, /min, /hr or /day (rate).

1.3 Overview

The instrument will display Flow Rate, Resettable Total and an Accumulated Total in engineering units as programmed by the user. Simple flow chart programming prompts you through the programming set up greatly reducing the need to refer to the instruction manual. All user program data is retained if the battery is removed

Environments

The instrument is weatherproof to IP66/67 (Nema 4X) standards, constructed in ADC12 aluminum alloy with stainless screws \& FKM O-ring seals. The instrument suits harsh indoor and outdoor environments \& conforms to EMC directive 89/336/EEC Electro Magnetic Compatibility

Features

PIN Protection, NPN scaleable pulse output, Low frequency cut-off, display priority \& large backlit digital display (backlighting enabled under external DC power only)

Installation

Specifically engineered to be directly mounted on a variety of flowmeters, wall or surface mounted, pipe or panel mounted. Various mounting kits are available. The instrument can be self powered or may be powered by an external dc supply or two wire loop powered

1.4 LCD displays

Full LCD display test feature illuminates all display segments and script text displays for 5 seconds when entering the program mode.

Resetable Total This large 6 digit display can be programmed for up to 3 decimal places.

Accumulative Total The 8 digit display can

 be programmed for up to 3 decimal places. Reset is only possible when in the program mode which can be PIN protected for security.Rate display Rate is displayed with a flashing time base of either SEC, /min, /hr or dAy followed by up to 5 digits of rate, these are programmable for up to 3 "floating" decimal places.

Time bases of units /SEC \& units /dAy are displayed to the left of the digital display whilst units $/ \mathrm{min}$ \& $/ \mathrm{hr}$ are to the right of the rate digits as shown.

Backlighting The LCD backlight feature will only work from an external dc power source in the range of $8 \sim 24 \mathrm{Vdc}$.

2. OPERATION

2.1 Accumulative Total

Accumulative total can be reset in the program mode. The accumulative total is displayed by pressing the ACCUM TOTAL key.

2.2 Resettable Total

The resettable total display remains visible at all times \& may be reset at any time by pressing the reset button for 1~2 seconds.
2.3 Rate display The second line display toggles between Rate \& Accumulative Total as the appropriate keys are pressed. The instrument will default out of the rate mode after 1 minute when under battery power, this is to conserve the battery as the unit draws more current when it needs to calculate rate. Under external power the instrument will remain on Rate or Accumulative Total as they are selected.

When rate is displayed the leading three alpha characters on the left of the display "flash" the time base for rate eg. rate $/ \mathrm{SEC}$. rate $/ \mathrm{dA} \mathrm{A}$. \& rate $/ \mathrm{min}$. or rate /hr to the left of the rate digits. Decimal points float to provide good resolution \& rangeability.

The minimum input frequency for rate display is 0.25 hz reducing to 0.1 hz If the low frequency cut-off is set to 0.1 Hz (see clause 4.7).

2.4 Keypad function matrix

KEY	FUNCTION IN OPERATING MODE	FUNCTION IN PROGRAM MODE		
ACCUM				
TOTAL			\quad	Displays Accumulative Total
:---:				
when pressed.	\quad No function			

Panel mount options

See panel mount template page 18

* order Pipe mount kit P/No. APM

Optional facia protector, 3 mm clear polycarbonate plate with access port

3.2 Flowmeter connections - unpowered sensors

DIP switch functions :

	$\square 3$	Switch 3 : ON engages 820Ω pull down resister
Input	ON- ${ }^{2}$	Switch 2 : ON engages 1 meg Ω pull up resister
	\square	Switch 1 : ON engages 0.01 uf capacitor to suppress reed switch boun

2. Voltage Pulse

3. Coil (Turbine \& paddle style flowmeters - minimum 15mV p-p)

4. Hall effect (5~24Vdc open collector)

5. Namur (inductive proximity switch) DIP SW3 (pull down) is on

6. Current modulated pulse ($4 m A$ to $20 m A$ pulse amplitude

3.3 Wiring connections

External DC powering - required for powered flow sensors, display backlighting or pulse outputs.

Note : Powering the instrument from an external DC source will cause the backlighting feature to turn on, if this is not desirable at all times then install a power isolation switch in series with the DC power source as shown.

Remote reset

Terminals 1 \& 2 cater for the connection of a remote reset switch, this will reset the 6 digit resettable totaliser display but does not effect the 8 digit Accumulative totaliser. The remote switch needs to have a momentary contact action only.

Remote reset switch

Wiring requirements : Use multi-core screened twisted pair instrument cable ($0.25-0.5 \mathrm{~mm}^{2}$) for electrical connection between the RT and any remote flowmeter or receiving instrument. The screen needs to be earthed to the signal ground of the receiving instrument only to protect the transmitted signal from mutual inductive interference.

Instrument cabling should not be run in a common conduit or parallel with power and high inductive load carrying cables, powe surges \& power line frequencies may induce erroneous noise transients onto the signal. Run instrument cables in a separate conduit or with other instrument cables.

3.3 Wiring connections (continued)

Pulse \& Alarm Output (for this feature the instrument must be externally powered as per page 12)
The scaled pulse output is in the form of an NPN (current sinking) style pulse capable of switching up to 100 mA
Current sinking derives its name from the fact that it "sinks current from a load". When activated the current flows from the load into the appropriate output (terminals $7,13 \& 14$).

Pulse scaling is set as the number of litres / gallons etc. per output pulse Eg. 0.1 litres/pulse, 10 litres/pulse, 100 gallons/pulse Range is 0.1 - 9999.9 Eng.unit/pulse.

The pulse width (pulse duration) of the output pulse automatically mirrors the cyclic width of the incoming pulse, for example 5 Hz input frequency would produce a scaled pulse output with a duration $\leq 200 \mathrm{~ms}$, for 100 Hz input the output pulse duration would be $\leq 10 \mathrm{~ms}$.

Driving a logic input \qquad The output voltage pulse is typically the internal voltage of the load. The load would normally have an internal pull up resistor on its input as shown

Driving a coil ---- - - The coil load is obtained by dividing the coil voltage by coil impediance (Ω), is expressed in amps \& is not to exceed 0.1A. The coil voltage is connected across \& must match the RT supply voltage \& the output $(7,13 \& 14)$.

4. PROGRAM PARAMETERS

Note: The instrument defaults out of the program mode if no programming entries are made after 4 minutes.

4.1 PIN No. Program Protection

Any user defined PIN number other than 0000 will engage the program protection feature, failure to input the correct PIN number will deny the ability to change any of the program parameters but will allow the user to step through and view the existing program parameters.

Only one PIN number may be set but this can be changed at any time after gaining access through PIN entry. A second back up PIN number is installed at the factory should the programmed PIN be lost or forgotten. (refer bottom of page 16 for the back up PIN No.)

4.2 Resetting Accumulated Total

Resetting the accumulated total can only be done in the program mode

4.3 Engineering Units

Select from available Engineering units to right of the display (refer clause 1.4), for other engineering units set display to show no engineering units \& program a suitable K-factor.

4.4 K-factor (scale factor)

Enter K-factor at S-Fact, up to 5 whole numbers \& 3 decimal numbers can be entered using the arrowed keys.

4.6 Rate response

Adjustable response (rate dampening) is available to smooth out fluctuating flow input signals in order to provide a stable rate display. Most input signal are reasonably stable and need only a low setting value of 001 to 004 . The esponse number (ranged 001~999) represents the number of pulse intervals (duration between each pulse) that the processor averages and displays the rate as calculated.

As a general rule it would be best to apply a response number which is a multiple of the number of pulses a meter produces for each cycle of its primary measuring element, for example a rotating element may produce 4 pulses per revolution so 004, 008, 012 or 016 would be ideal response settings whereas a turbine meters with high resolution pulse outputs would require response settings like 050, 100, 200 or in some cases involving high frequency pulse outputs eg. 500hz, the response number would be set to say 999

4.7 Low frequency cut-off

The low frequency cut-off is most commonly set to 0.0 Hz (disabled) other than to:

1) To display rate for input frequencies below 0.25 hz , for example setting the cut-off at 0.1 Hz the rate will continue to display for input frequencies as low as 0.1 Hz (one pulse every 10 seconds), such conditions often apply to flowmeters with low frequency pulse outputs.
2) Inhibit the integration \& registration of "apparent flow" which at times may be encountered on mobile installations where the movement of the vehicle or dead heading a pulsating pump may cause spurious flow signals which are not attributed to actual flow.
3) Inhibit the integration \& registration of flow at input frequencies below what is considered the minimum accurate flow rate of the primary flow element (flowmeter).

Caution: If the low frequency cut-off is set to any value other than 0.0 Hz then the integration of rate and total will cease at frequencies on or below the set frequency value.
4.8 Display priority The large digits at the top of the display can be programmed to show either flow rate or resettable total. When flow rate is selected at the top display the rate key can be used to cycle between rate, reset total \& accumulate total, in this mode the instrument will default from rate to reset \& accumulative totals after 1 minute, external power must be applied if required to display rate at top display continuously.
4.9.1 Flow Alarms (The RT must be externally powered as per page 12) Two flow alarm FET (transistor) outputs may be programmed for Low \& High flow alarms. An optional plug in alarm board is available having dual SPDT 5 amp electro-mechanical contacts.

4.9.2 Flow Alarm Deadband

An adjustable deadband (reset differential) provides a trip buffer zone about the set point in order to overcome alarm "chattering" when the flow rate is fluctuating close to the alarm set point. Deadband is entered as \% of each set point value (refer to page 17 for an example).

Optional alarm outputs

1) Low flow alarm (Lo-Flo) occurs when the flow falls below the set point, High flow alarm (Hi.Flo) occurs when the flow goes above the set point.
2) Deadband (d-bANd) or Reset Differential, provides a buffer zone about the alarm set point in order to avoid alarm output "chattering " on \& off when the flow rate is hovering on or about an alarm set point.

The \% deadband applies above the Low set point and below the High set point. Deadband is set as a percentage of each set point.

Eg: 5\% deadband at a low alarm set point of $100 \mathrm{~L} / \mathrm{hr}$ will cause a low alarm when the flow drops to $100 \mathrm{~L} / \mathrm{hr}$, the alarm will not switch off until the flow increases above 105 L/hr

Program detail record

	Pencil your program details here			
User selected PIN No. $\quad \square$				
Engineering units				
K-factor (scale factor)	$\mathrm{K}=$			
Decimal for reset Total	$\square 0$	$\square 0.0$	$\square 0.00$	
Decimal for Accum. total	$\square 0$	$\square 0.0$	$\square 0.00 \quad \square$	
Decimal for Rate	$\square 0$	$\square 0.0$	$\square 0.00$	
Time base for Rate	Units / \square Sec \square Min $\square \mathrm{Hr} \quad \square$ Day			
Rate response				
Low frequency cut-off	Hertz =			
Scaled pulse output	1 pulse =			
Low flow alarm	Set at		Deadband	\%
High flow alarm	Set at		Deadband	\%

8. ALPHABETICAL INDEX

A	Accumulative total	7	P	PIN number protection	14, 16
				Programming	14, 15
B	Battery			Program detail record	16
	Backlighting the LCD display	- 6		Pulse output	13
D	DC power	5, 12	R	Rate response	14, 15
	Decimal point	6		Rate display	7, 15
	Displays	6		Rate time base	7, 15
	Display priority	15		Remote reset input	12
				Resettable total	7
E	Engineering units	5, 15		Resetting accumulative total	15
	External DC powering	12			
			S	Scale factor (K-factor)	14, 15
F	Flow alarms	15, 17		Scaled pulse output	13
	Flowmeter connections	10, 11		Specifications	5
	Flow rate	6, 15			
I	Installation Input signals	$8 \sim 13$	W	Wiring of flowmeter inputs	10, 11
		10, 11		Wiring of pulse output	13
				Wiring to external power	12
	Keypad functions	7		Wiring requirements	12
K	K-factor (scale factor)	14, 15			
L	LCD displays	6			
	Low frequency cut-off	14, 15			
M	Model number designation	4			
	Mounting options				
0	Operation	7			
	Overview	6			

8. Instruction manual supplement for

ELECTRONICS ZOD-Z3, ZOD-Z5 \& ZOD-B1 WITH

 OPTIONAL RELAY OUTPUT BOARD

The Relay Control Output boards are an option for the flow rate totalisers and batch controller; they have two electro-mechanical SPCO relays instead of the solid state outputs of either instrument. The relays will switch higher loads (5 amps max.) to that of the solid state relays and provide electrical isolation between the switched output and the instruments circuitry. This option cannot be used in Intrinsically Safe environs.

Once plugged into the 16 pin socket (ZOD-Z3 \& ZOD-B1) or 20 pin socket (ZOD-Z5), the solid state outputs at terminals $13 \& 14$ then cannot be used, the installer must make his control terminations at the relay board erminals marked NO (normally open), C (common) \& NC (normally closed), DC \& AC voltages may be switched at these terminals (generally the active is switched).

2. Installing relay board

First check (and set if necessary) the positions of the flow input DIP switches adjacent terminals 1~4 on the instrument PC board (see pages $9 \sim 10$ in the relevant instrument instruction manual for setting options).

As the relay control output board requires external DC power ($12 \sim 24 \mathrm{Vdc}$ at terminals $5 \& 6$) the instrument battery is no longer required. With no external power applied remove the battery to enable the relay board to be plugged into place using the battery cradle as the retaining mechanism, apply slight pressure to the board as you spread the battery cradle clips to embrace the relay PC board. The assembly is now ready to be wired.

3. Operation

The relay board has a voltage dropping circuit which limits the relay coil drive voltage to 12 Vdc irrespective of the external supply to the instrument. When the external supply exceeds 12 Vdc the largest component of this circuit will become hot to touch, this is a normal condition as the circuit dissipates the excess input voltage.

Relay control output board with two SPCO relays shown with a ZOD-Z3, N/O contacts are rated to 5 A \& the N/C contacts 3A max.

Fl-420 Universal pulse processor board

INSTRUCTION MANUAL SUPPLEMENT

Display
nput frequency (Hall Effect \& Coil)
(Reed Switch)
Input sensor types
Milliamp outputs

Pulse repeater outpu
Maximum loop powered voltage
Accuracy
Response
Full scale limit
Temperature range
Processor
Resolution
Program protection

On board programming via three tactile push buttons
4 digit, seven segment LCD with 4 levels of contrast adjustment
$1.0 \sim 9999 \mathrm{~Hz}$. (frequencies below 1 hz are not registered).
$1.0 \sim 80.0 \mathrm{~Hz}$. (frequencies below 1 hz are not registered).
Reed switch, Hall Effect, pulse wire or reluctance coil (turbine meter).

1) Analog $4 \sim 20 \mathrm{~mA}$, (600Ω maximum drive capability @ 28 Vdc)
2) Modulated between 4 and 20 mA (divided pulse \& flow switch). solated NPN square wave, $30 \mathrm{Vdc} \times 100 \mathrm{~mA}$ maximum load.
28 Vdc - absolute maximum (reverse polarity protected)
+/- 0.3\% of span.
Programmable 1~9 seconds.
20 mA internally limited (over range defaults to 0 mA). $-10^{\circ} \mathrm{C} \sim+80^{\circ} \mathrm{C}$.
8 bit processing via 256 step Pulse Width Modulation 62uA.(frequencies above 99.99 Hz are processed as whole numbers). All programmed \& accumulated data is stored in non-volatile memory.

Overview

The $\mathrm{Fl}-420$ is a non volatile field programmable pulse converter which may be set to function as either a frequency to current converter (F/I), a pulse divider or a single point flow rate alarm device for high or low flow rate detection. The instrument also has an NPN pulse output which mirrors input pulse frequency, this two wire signal may be used for remote totalisation and/or rate indication.

The instrument is specifically designed to fit within the terminal housing of any of the propriety flowmeters or may be adapted to other styles of meters including Turbine and Insertion Paddle wheel flowmeters.

In all three functions, the output signal remains as a milliamp signal as follows:
Function $1=$ frequency to current (F / I), $4 \sim 20 \mathrm{~mA}$ proportional to flow rate, spanned as desired.
Function 2 = frequency divider, divider range 1~9999, output is 4 mA (pulse low) and 20 ma (pulse high), 25 hz max.
Function 3 = frequency (flow rate) alarm, output is 4 mA (no alarm condition) and 20 ma (flow rate alarm condition).

Calibration

The philosophy behind the processor board rests on the origin of the flow input signal being expressed in terms of frequency rather than K-factor (scale factor) however, in order to derive the relevant frequency the user must work from the flowmeters known K-factor, these are in most cases available from the respective flowmeters calibration sheet or given as a nominal with some inferential style flowmeters such as insertion paddle wheel meters

Some programming examples for each function are shown below.

Programming examples :
Meter K-factor * Flow rate $^{* *}$ F/l converter divider $^{3 * * *}$ (divisor) Flow alarm 2816 30 litres $/ \mathrm{hr}$ 23.47 hz $(282$ or 2816$)$ 23.47 hz 102.7 600 litres $/ \mathrm{hr}$ 17.12 hz (103) 17.12 hz 52.44 220 LPM 192 hz $(52$ or 524$)$ 192 hz 14.31 220 LPM 52.47 hz (143) 52.47 hz 4.412 1550 LPM 110 hz $(44$ or 441$)$ 110 hz

(*) Flowmeter K-factor from calibration report or established tests.
(**) Flow rate for 20 mA full scale output (no decimal position above 99.9 hz).
(***) Minimum divisor depends on acceptable error levels by the user.

Input configurations

The processor board is produced in two configurations, the most common is supplied fitted with a loop powered Hall Effect pick up, this model is typically supplied with positive displacement flowmeters. The second configuration board does not have a Hall Effect device but has the facility to accept either a reed switch, coil or pulse wire input via hard wire solder pad connection. Unless otherwise requested at time of order placement the unit is preprogrammed at the factory to produce 20 mA at the maximum flow rate of the associated flowmeter.

Function configuration

Frequency to current (F/I) Produces $4 \sim 20 \mathrm{~mA}$ analog output proportional to flow rate. Programming requires the setting of a decimal point for frequency resolution eg. $1.000 \mathrm{hz}, 10.00 \mathrm{hz}, 100 \mathrm{hz}$ or 1000 hz followed by the full scale frequency to produce 20 mA output then finally a response time in seconds. The response time is used to smooth out fluctuating flow rate in order to provide a stable current output. Most input signals are reasonably stable and only need a low setting value of 1 to 3 seconds (9 sec. is maximum), these are step changes to the analog output signal, for example a response setting of 2 seconds would cause the processor to update the output every 2 seconds. The final setting covers the number of poles (NOP) of magnetic flux associated with the primary measuring elements, for example an Oval PD flowmeter may typically have 1, 2 or 4 magnetic poles per revolution, a Turbine flowmeter may have from 5 to 20 turbine blades, this feature compensates for any inherent cyclic variations in the flux density field of each pole which could otherwise produce an unstable output. Setting the NOP (or multiples of the NOP for even better stability) enables the processor to average the input readings thereby maximizing accuracy and repeatability of the output.

The span adjustment $(20 \mathrm{~mA})$ is preset at the factory and should have no need to be adjusted there after. In run mode the LCD defaults to display the flowmeter input frequency which is used during calibration.

Frequency (flow rate) alarm Output is current modulated between 4 mA (no alarm condition) and 20ma (flow rate alarm condition) when the input frequency reaches the alarm set point frequency. Programming requires the setting of a decimal point for frequency resolution eg. $5.243 \mathrm{hz}, 52.43 \mathrm{hz}, 524 \mathrm{hz}$ or 5243 hz followed by the input frequency at which the flow alarm is to change status, next the deadband is set as a percentage of the frequency switch point. Deadband provides a variable trip buffer zone about the set point in order to overcome alarm "chattering" when the flow is fluctuating close to the set point. Deadband is expressed as 0~9\% of the set point (hz). The final setting covers the number of poles (NOP) of magnetic flux associated with the primary measuring elements, for example an Oval PD flowmeter may typically have 1, 2 or 4 magnetic poles per revolution, a Turbine flowmeter may have from 5 to 20 turbine blades, this feature compensates for any inherent cyclic variations in the flux density field of each pole which could otherwise produce an unstable output. Setting the NOP (or multiples of the NOP for even better stability) enables the processor to average the input readings thereby maximizing accuracy and repeatability.

In run mode the LCD defaults to display the flowmeter input frequency which is used during alarm set point checks.

Frequency divider A limited divider range of 1~9999 suits most smaller capacity flowmeters having a high resolution pulse output generally in excess of 100 pulses per litre, gallon etc. often in situations where the output is used for totalising. Other applications can include dosing control signals or general output frequency reduction. Programming simply requires the setting of the appropriate divisor number (between 0001 \& 9999). The divided pulse output is limited to 25 hz . The output is current modulated between 4 mA and 20 mA .

In run mode the LCD defaults to function as an output totaliser \& may be reset at any time.

Touch key operation

The 3 touch keys need to be operated slowly with deliberate action as the processor cyclic routine is some what slow \& at times may miss a sharp key action, this is not to be interpreted as an intermittent fault.

Testing output with a multimeter

Wire in accordance with the diagram shown. Test output in proportion to frequency input for the 16 mA span $(4 \sim 20 \mathrm{~mA}=16 \mathrm{~mA}$ span, 20 mA being full scale [FS] range), for example, if 100 hz were to produce 20 mA then 50 hz should produce $12 \mathrm{~mA}, \underline{25 \mathrm{hz}}$ should produce $8 \mathrm{~mA} \& \underline{10 \mathrm{hz}} 5.6 \mathrm{~mA}$.

NOTE: Include a 250Ω load resistor in circuit to protect output from overload.

Electrical connections

Twisted pair low capacitance shielded instrument cable $7 \times 0.3 \mathrm{~mm}\left(0.5 \mathrm{~mm}^{2}\right)$ should be used for electrica connection between the flowmeter and remote instrumentation (Belden® number 9363 or similar). The cable drain or screen should be terminated on a DC COMMON or a specifically assigned shield termination at the readout instrument end only in order to protect the transmitted signal from mutual inductive interference. IMPORTANT, tape off \& isolate the shield at the flowmeter end of the cable.

The cable should not be run in a common conduit or parallel with power and high inductive load carrying cables as power surges may induce erroneous noise transients onto the transmitted pulse signal or cause damage to the electronics. Run the cable in a separate conduit or with low energy instrument cables only.

loop wiring + repeater pulse output

